Fredholm determinants
Open Mathematics (2011)
- Volume: 9, Issue: 2, page 205-243
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHenry McKean. "Fredholm determinants." Open Mathematics 9.2 (2011): 205-243. <http://eudml.org/doc/269534>.
@article{HenryMcKean2011,
abstract = {The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.},
author = {Henry McKean},
journal = {Open Mathematics},
keywords = {Fredholm detemninant; Brownian motion; KdV equation; determinants; Fredholm operators; kernel operators; function spaces; random matrices},
language = {eng},
number = {2},
pages = {205-243},
title = {Fredholm determinants},
url = {http://eudml.org/doc/269534},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Henry McKean
TI - Fredholm determinants
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 205
EP - 243
AB - The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.
LA - eng
KW - Fredholm detemninant; Brownian motion; KdV equation; determinants; Fredholm operators; kernel operators; function spaces; random matrices
UR - http://eudml.org/doc/269534
ER -
References
top- [1] Ahlfors L.V., Complex Analysis, Internat. Ser. Pure Appl. Math., 3rd ed., McGraw-Hill, New York, 1979 Zbl0395.30001
- [2] Brown R., A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants, etc., Philosophical Magazine, 1828, 4, 161–173
- [3] Cameron R.H., Martin W.T., The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Journal of Mathematics and Physics Mass. Inst. Tech., 1944, 23, 195–209 Zbl0060.29103
- [4] Conrey J.B., The Riemann hypothesis, Notices Amer. Math. Soc., 2003, 50(3), 341–353 Zbl1160.11341
- [5] Courant R., Differential and Integral Calculus, vol. 2, Wiley Classics Lib., John Wiley & Sons, New York, 1988
- [6] Courant R., Hilbert D., Methoden der Mathematischen Physik, Springer, Berlin, 1931 Zbl0001.00501
- [7] Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys., 1962, 3, 140–156 http://dx.doi.org/10.1063/1.1703773 Zbl0105.41604
- [8] Dyson F.J., Fredholm determinants and inverse scattering problems, Comm. Math. Phys., 1976, 47(2), 171–183 http://dx.doi.org/10.1007/BF01608375 Zbl0323.33008
- [9] Einstein A., Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 1905, 17, 549–560; reprinted in: Investigations on the Theory of the Brownian Movement, Dover, New York, 1956 http://dx.doi.org/10.1002/andp.19053220806 Zbl36.0975.01
- [10] Fredholm I., Sur une classe d’équations fonctionelles, Acta Math., 1903, 27(1), 365–390 http://dx.doi.org/10.1007/BF02421317 Zbl34.0422.02
- [11] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Methods for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19(19), 1967, 1095–1097 http://dx.doi.org/10.1103/PhysRevLett.19.1095 Zbl1061.35520
- [12] Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D, 1980, 1(1), 80–158 http://dx.doi.org/10.1016/0167-2789(80)90006-8 Zbl1194.82007
- [13] Kato T., A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York-Berlin, 1982
- [14] Lamb G.L., Jr., Elements of Soliton Theory, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1980 Zbl0445.35001
- [15] Lax P.D., Linear Algebra, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1997
- [16] Lax P.D., Functional Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2002 Zbl1009.47001
- [17] Lévy P., Le Mouvement Brownien, Mémoir. Sci. Math., 126, Gauthier-Villars, Paris, 1954
- [18] McKean H.P., Jr., Stochastic Integrals, Probab. Math. Statist., Academic Press, New York-London, 1969
- [19] Mehta M.L., Random Matrices, 2nd ed., Academic Press, Boston, 1991
- [20] Munroe M.E., Introduction to Measure and Integration, Addison-Wesley, Cambridge, 1953 Zbl0050.05603
- [21] Pöppe Ch., The Fredholm determinant method for the KdV equations, Phys. D, 1984, 13(1–2), 137–160 http://dx.doi.org/10.1016/0167-2789(84)90274-4
- [22] Tracy C.A., Widom H., Introduction to random matrices, In: Geometric and Quantum Aspects of Integrable Systems, Scheveningen, 1992, Lecture Notes in Phys., 424, Springer, Berlin, 1993, 103–130 http://dx.doi.org/10.1007/BFb0021444
- [23] Uhlenbeck G.E., Ornstein L.S., On the theory of the Brownian motion, Phys. Rev., 1930, 36, 823–841 http://dx.doi.org/10.1103/PhysRev.36.823 Zbl56.1277.03
- [24] Weyl H., The Classical Groups, Princeton University Press, Princeton, 1939
- [25] Whittaker E.T., Watson G.N., A Course of Modern Analysis, 4th ed., Cambridge University Press, New York, 1962
- [26] Wiener N., Differential space, Journal of Mathematics and Physics Mass. Inst. Tech., 1923, 2, 131–174
- [27] Wigner E., On the distribution of the roots of certain symmetric matrices, Ann. of Math., 1958, 67, 325–326 http://dx.doi.org/10.2307/1970008 Zbl0085.13203
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.