Fredholm determinants

Henry McKean

Open Mathematics (2011)

  • Volume: 9, Issue: 2, page 205-243
  • ISSN: 2391-5455

Abstract

top
The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.

How to cite

top

Henry McKean. "Fredholm determinants." Open Mathematics 9.2 (2011): 205-243. <http://eudml.org/doc/269534>.

@article{HenryMcKean2011,
abstract = {The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.},
author = {Henry McKean},
journal = {Open Mathematics},
keywords = {Fredholm detemninant; Brownian motion; KdV equation; determinants; Fredholm operators; kernel operators; function spaces; random matrices},
language = {eng},
number = {2},
pages = {205-243},
title = {Fredholm determinants},
url = {http://eudml.org/doc/269534},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Henry McKean
TI - Fredholm determinants
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 205
EP - 243
AB - The article provides with a down to earth exposition of the Fredholm theory with applications to Brownian motion and KdV equation.
LA - eng
KW - Fredholm detemninant; Brownian motion; KdV equation; determinants; Fredholm operators; kernel operators; function spaces; random matrices
UR - http://eudml.org/doc/269534
ER -

References

top
  1. [1] Ahlfors L.V., Complex Analysis, Internat. Ser. Pure Appl. Math., 3rd ed., McGraw-Hill, New York, 1979 Zbl0395.30001
  2. [2] Brown R., A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants, etc., Philosophical Magazine, 1828, 4, 161–173 
  3. [3] Cameron R.H., Martin W.T., The Wiener measure of Hilbert neighborhoods in the space of real continuous functions, Journal of Mathematics and Physics Mass. Inst. Tech., 1944, 23, 195–209 Zbl0060.29103
  4. [4] Conrey J.B., The Riemann hypothesis, Notices Amer. Math. Soc., 2003, 50(3), 341–353 Zbl1160.11341
  5. [5] Courant R., Differential and Integral Calculus, vol. 2, Wiley Classics Lib., John Wiley & Sons, New York, 1988 
  6. [6] Courant R., Hilbert D., Methoden der Mathematischen Physik, Springer, Berlin, 1931 Zbl0001.00501
  7. [7] Dyson F.J., Statistical theory of the energy levels of complex systems. I, J. Mathematical Phys., 1962, 3, 140–156 http://dx.doi.org/10.1063/1.1703773 Zbl0105.41604
  8. [8] Dyson F.J., Fredholm determinants and inverse scattering problems, Comm. Math. Phys., 1976, 47(2), 171–183 http://dx.doi.org/10.1007/BF01608375 Zbl0323.33008
  9. [9] Einstein A., Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 1905, 17, 549–560; reprinted in: Investigations on the Theory of the Brownian Movement, Dover, New York, 1956 http://dx.doi.org/10.1002/andp.19053220806 Zbl36.0975.01
  10. [10] Fredholm I., Sur une classe d’équations fonctionelles, Acta Math., 1903, 27(1), 365–390 http://dx.doi.org/10.1007/BF02421317 Zbl34.0422.02
  11. [11] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Methods for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19(19), 1967, 1095–1097 http://dx.doi.org/10.1103/PhysRevLett.19.1095 Zbl1061.35520
  12. [12] Jimbo M., Miwa T., Môri Y., Sato M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D, 1980, 1(1), 80–158 http://dx.doi.org/10.1016/0167-2789(80)90006-8 Zbl1194.82007
  13. [13] Kato T., A Short Introduction to Perturbation Theory for Linear Operators, Springer, New York-Berlin, 1982 
  14. [14] Lamb G.L., Jr., Elements of Soliton Theory, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1980 Zbl0445.35001
  15. [15] Lax P.D., Linear Algebra, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 1997 
  16. [16] Lax P.D., Functional Analysis, Pure Appl. Math. (N. Y.), John Wiley & Sons, New York, 2002 Zbl1009.47001
  17. [17] Lévy P., Le Mouvement Brownien, Mémoir. Sci. Math., 126, Gauthier-Villars, Paris, 1954 
  18. [18] McKean H.P., Jr., Stochastic Integrals, Probab. Math. Statist., Academic Press, New York-London, 1969 
  19. [19] Mehta M.L., Random Matrices, 2nd ed., Academic Press, Boston, 1991 
  20. [20] Munroe M.E., Introduction to Measure and Integration, Addison-Wesley, Cambridge, 1953 Zbl0050.05603
  21. [21] Pöppe Ch., The Fredholm determinant method for the KdV equations, Phys. D, 1984, 13(1–2), 137–160 http://dx.doi.org/10.1016/0167-2789(84)90274-4 
  22. [22] Tracy C.A., Widom H., Introduction to random matrices, In: Geometric and Quantum Aspects of Integrable Systems, Scheveningen, 1992, Lecture Notes in Phys., 424, Springer, Berlin, 1993, 103–130 http://dx.doi.org/10.1007/BFb0021444 
  23. [23] Uhlenbeck G.E., Ornstein L.S., On the theory of the Brownian motion, Phys. Rev., 1930, 36, 823–841 http://dx.doi.org/10.1103/PhysRev.36.823 Zbl56.1277.03
  24. [24] Weyl H., The Classical Groups, Princeton University Press, Princeton, 1939 
  25. [25] Whittaker E.T., Watson G.N., A Course of Modern Analysis, 4th ed., Cambridge University Press, New York, 1962 
  26. [26] Wiener N., Differential space, Journal of Mathematics and Physics Mass. Inst. Tech., 1923, 2, 131–174 
  27. [27] Wigner E., On the distribution of the roots of certain symmetric matrices, Ann. of Math., 1958, 67, 325–326 http://dx.doi.org/10.2307/1970008 Zbl0085.13203

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.