Singularities on complete algebraic varieties
Fedor Bogomolov; Paolo Cascini; Bruno Oliveira
Open Mathematics (2006)
- Volume: 4, Issue: 2, page 194-208
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFedor Bogomolov, Paolo Cascini, and Bruno Oliveira. "Singularities on complete algebraic varieties." Open Mathematics 4.2 (2006): 194-208. <http://eudml.org/doc/269576>.
@article{FedorBogomolov2006,
abstract = {We prove that any finite set of n-dimensional isolated algebraic singularities can be afforded on a simply connected projective variety.},
author = {Fedor Bogomolov, Paolo Cascini, Bruno Oliveira},
journal = {Open Mathematics},
keywords = {14B05; 32S05},
language = {eng},
number = {2},
pages = {194-208},
title = {Singularities on complete algebraic varieties},
url = {http://eudml.org/doc/269576},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Fedor Bogomolov
AU - Paolo Cascini
AU - Bruno Oliveira
TI - Singularities on complete algebraic varieties
JO - Open Mathematics
PY - 2006
VL - 4
IS - 2
SP - 194
EP - 208
AB - We prove that any finite set of n-dimensional isolated algebraic singularities can be afforded on a simply connected projective variety.
LA - eng
KW - 14B05; 32S05
UR - http://eudml.org/doc/269576
ER -
References
top- [1] M. Artin: “On the solutions of analytic equations”, Invent. Math., Vol. 5, (1968), pp. 277–291. http://dx.doi.org/10.1007/BF01389777 Zbl0172.05301
- [2] M. Artin: “Algebraic approximation of structures over complete local rings”, Publ. Math. I.H.E.S., Vol. 36, (1969), pp. 23–58. Zbl0181.48802
- [3] F.A. Bogomolov and T. Pantev: “Weak Hironaka Theorem”, Math. Res. Let., Vol. 3, (1996), pp. 299–307. Zbl0869.14007
- [4] C. Ciliberto and S. Greco: “On normal surface singularities and a problem of Enriques”, Commun. Algebra, Vol. 28(12), (2000), pp. 5891–5913. Zbl1017.14011
- [5] C. Epstein and G. Henkin: “Stability of embeddings for pseudoconcave surfaces and their boundaries”, Acta Math., Vol. 185(2), (2000), pp. 161–237. Zbl0983.32035
- [6] M J. Mather: Notes on Topological Stability, Mimeographed Notes, Harvard University, 1970.
- [7] D. Morrison: “The birational geometry of surfaces with rational double points”, Math. Ann., Vol. 271, (1985), pp. 415–438. http://dx.doi.org/10.1007/BF01456077 Zbl0539.14008
- [8] R. Hartdt: “Topological Properties of subanalytic sets”, Trans. Amer. Math. Soc., Vol. 211, (1975), pp. 193–208.
- [9] L. Lempert: “Algebraic approximations in analytic geometry”, Inv. Math., Vol. 121(2), (1995), pp. 335–353. Zbl0837.32008
- [10] N. Levinson: “A polynomial canonical form for certain analytic functions of two variables at a critical point”, Bull. Am. Math. Soc., Vol. 66, (1960), 366–368. Zbl0192.18202
- [11] F. Sakai: “Weil divisors on normal surfaces”, Duke Math., Vol. 51, (1984), pp. 877–887. Zbl0602.14006
- [12] F. Sakai: “The structure of normal surfaces”, Duke Math., Vol. 52, (1985), pp. 627–648. Zbl0596.14025
- [13] H. Whitney: Local Properties of Analytic Varieties, Differential and Combinatorial Topology, Princeton Univ. Press, Princeton N.J., 1965, pp. 205–244.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.