Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices

Anne Monvel; Lech Zielinski

Open Mathematics (2014)

  • Volume: 12, Issue: 3, page 445-463
  • ISSN: 2391-5455

Abstract

top
We consider an infinite Jacobi matrix with off-diagonal entries dominated by the diagonal entries going to infinity. The corresponding self-adjoint operator J has discrete spectrum and our purpose is to present results on the approximation of eigenvalues of J by eigenvalues of its finite submatrices.

How to cite

top

Anne Monvel, and Lech Zielinski. "Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices." Open Mathematics 12.3 (2014): 445-463. <http://eudml.org/doc/269580>.

@article{AnneMonvel2014,
abstract = {We consider an infinite Jacobi matrix with off-diagonal entries dominated by the diagonal entries going to infinity. The corresponding self-adjoint operator J has discrete spectrum and our purpose is to present results on the approximation of eigenvalues of J by eigenvalues of its finite submatrices.},
author = {Anne Monvel, Lech Zielinski},
journal = {Open Mathematics},
keywords = {Jacobi matrices; Eigenvalue estimates; Error estimates; Helffer-Sjöstrand formula; eigenvalue estimates; error estimates},
language = {eng},
number = {3},
pages = {445-463},
title = {Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices},
url = {http://eudml.org/doc/269580},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Anne Monvel
AU - Lech Zielinski
TI - Approximation of eigenvalues for unbounded Jacobi matrices using finite submatrices
JO - Open Mathematics
PY - 2014
VL - 12
IS - 3
SP - 445
EP - 463
AB - We consider an infinite Jacobi matrix with off-diagonal entries dominated by the diagonal entries going to infinity. The corresponding self-adjoint operator J has discrete spectrum and our purpose is to present results on the approximation of eigenvalues of J by eigenvalues of its finite submatrices.
LA - eng
KW - Jacobi matrices; Eigenvalue estimates; Error estimates; Helffer-Sjöstrand formula; eigenvalue estimates; error estimates
UR - http://eudml.org/doc/269580
ER -

References

top
  1. [1] Boutet de Monvel A., Naboko S., Silva L.O., Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations, C. R. Math. Acad. Sci. Paris, 2004, 338(1), 103–107 http://dx.doi.org/10.1016/j.crma.2003.12.001[Crossref] Zbl1037.47019
  2. [2] Boutet de Monvel A., Naboko S., Silva L.O., The asymptotic behavior of eigenvalues of a modified Jaynes-Cummings model, Asymptot. Anal., 2006, 47(3–4), 291–315 Zbl1139.47024
  3. [3] Boutet de Monvel A., Zielinski L., Explicit error estimates for eigenvalues of some unbounded Jacobi matrices, In: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, Berlin, July 12–16, 2010, Oper. Theory Adv. Appl., 221, Birkhäuser/Springer, Basel, 2012, 187–217 
  4. [4] Boutet de Monvel A., Zielinski L., Asymptotic behavior of large eigenvalues of a modified Jaynes-Cummings model, preprint available at http://www.math.uni-bielefeld.de/~bibos/preprints/12-07-409.pdf Zbl1320.47032
  5. [5] Cojuhari P.A., Janas J., Discreteness of the spectrum for some unbounded Jacobi matrices, Acta Sci. Math. (Szeged), 2007, 73(3–4), 649–667 Zbl1211.47059
  6. [6] Davies E.B., Spectral Theory and Differential Operators, Cambridge Stud. Adv. Math., 42, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511623721[Crossref] 
  7. [7] Helffer B., Sjöstrand J., Équation de Schrödinger avec champ magnétique et équation de Harper, In: Schrödinger Operators, Sønderborg, August 1–12, 1988, Lecture Notes in Phys., 345, Springer, Berlin, 1989, 118–197 Zbl0714.34130
  8. [8] Janas J., Malejki M., Alternative approaches to asymptotic behaviour of eigenvalues of some unbounded Jacobi matrices, J. Comput. Appl. Math., 2007, 200(1), 342–356 http://dx.doi.org/10.1016/j.cam.2005.09.033[WoS][Crossref] Zbl1110.47020
  9. [9] Janas J., Naboko S., Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach, SIAM J. Math. Anal., 2004, 36(2), 643–658 http://dx.doi.org/10.1137/S0036141002406072[Crossref] Zbl1091.47026
  10. [10] Janas J., Naboko S., Stolz G., Decay bounds on eigenfunctions and the singular spectrum of unbounded Jacobi matrices, Int. Math. Res. Not. IMRN, 2009, 4, 736–764 [WoS] Zbl1175.47029
  11. [11] Malejki M., Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices, Linear Algebra Appl., 2009, 431(10), 1952–1970 http://dx.doi.org/10.1016/j.laa.2009.06.035[Crossref][WoS] 
  12. [12] Malejki M., Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l 2 by the use of finite submatrices, Cent. Eur. J. Math., 2010, 8(1), 114–128 http://dx.doi.org/10.2478/s11533-009-0064-x[WoS] Zbl1197.47046
  13. [13] Volkmer H., Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation, Constr. Approx., 2004, 20(1), 39–54 http://dx.doi.org/10.1007/s00365-002-0527-9[Crossref] Zbl1063.33028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.