Extremely non-complex Banach spaces
Open Mathematics (2011)
- Volume: 9, Issue: 4, page 797-802
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMiguel Martín, and Javier Merí. "Extremely non-complex Banach spaces." Open Mathematics 9.4 (2011): 797-802. <http://eudml.org/doc/269605>.
@article{MiguelMartín2011,
abstract = {A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.},
author = {Miguel Martín, Javier Merí},
journal = {Open Mathematics},
keywords = {Banach space; Complex structure; Daugavet equation; Extremely non-complex; Numerical index; Diameter of slices; complex structure; extremely non-complex Banach space; numerical index; diameter of slices},
language = {eng},
number = {4},
pages = {797-802},
title = {Extremely non-complex Banach spaces},
url = {http://eudml.org/doc/269605},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Miguel Martín
AU - Javier Merí
TI - Extremely non-complex Banach spaces
JO - Open Mathematics
PY - 2011
VL - 9
IS - 4
SP - 797
EP - 802
AB - A Banach space X is said to be an extremely non-complex space if the norm equality ∥Id +T 2∥ = 1+∥T 2∥ holds for every bounded linear operator T on X. We show that every extremely non-complex Banach space has positive numerical index, it does not have an unconditional basis and that the infimum of diameters of the slices of its unit ball is positive.
LA - eng
KW - Banach space; Complex structure; Daugavet equation; Extremely non-complex; Numerical index; Diameter of slices; complex structure; extremely non-complex Banach space; numerical index; diameter of slices
UR - http://eudml.org/doc/269605
ER -
References
top- [1] Duncan J., McGregor C.M., Pryce J.D., White A.J., The numerical index of a normed space, J. Lond. Math. Soc., 1970, 2, 481–488 Zbl0197.10402
- [2] Kadets V.M., Some remarks concerning the Daugavet equation, Quaest. Math., 1996, 19(1–2), 225–235 http://dx.doi.org/10.1080/16073606.1996.9631836
- [3] Kadets V., Katkova O., Martín M., Vishnyakova A., Convexity around the unit of a Banach algebra, Serdica Math. J., 2008, 34(3), 619–628 Zbl1224.46025
- [4] Kadets V., Martín M., Merí J., Norm equalities for operators, Indiana Univ. Math. J., 2007, 56(5), 2385–2411 http://dx.doi.org/10.1512/iumj.2007.56.3046 Zbl1132.46006
- [5] Kadets V.M., Shvidkoy R.V., Sirotkin G.G., Werner D., Banach spaces with the Daugavet property, Trans. Amer. Math. Soc., 2000, 352(2), 855–873 http://dx.doi.org/10.1090/S0002-9947-99-02377-6 Zbl0938.46016
- [6] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z Zbl1064.46009
- [7] Koszmider P., Martín M., Merí J., Extremely non-complex C(K) spaces, J. Math. Anal. Appl., 2009, 350(2), 601–615 http://dx.doi.org/10.1016/j.jmaa.2008.04.021 Zbl1162.46016
- [8] Koszmider P., Martín M., Merí J., Isometries on extremely non-complex C(K) spaces, J. Inst. Math. Jussieu, 2011, 10(2), 325–348 http://dx.doi.org/10.1017/S1474748010000204 Zbl1221.46012
- [9] Martín M., Oikhberg T., An alternative Daugavet property, J. Math. Anal. Appl., 2004, 294(1), 158–180 http://dx.doi.org/10.1016/j.jmaa.2004.02.006 Zbl1054.46010
- [10] Megginson R.E., An Introduction to Banach Space Theory, Grad. Texts in Math., 183, Springer, New York, 1998 Zbl0910.46008
- [11] Oikhberg T., Some properties related to the Daugavet property, In: Banach Spaces and their Applications in Analysis, Walter de Gruyter, Berlin, 2007, 399–401 Zbl1140.46305
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.