Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range

Robert Černý

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 114-127
  • ISSN: 2391-5455

Abstract

top
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem u W 0 1 L Φ Ω a n d - d i v Φ ' u u u + V x Φ ' u u u = f x , u + μ h x i n Ω , where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ℝn.

How to cite

top

Robert Černý. "Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range." Open Mathematics 12.1 (2014): 114-127. <http://eudml.org/doc/269606>.

@article{RobertČerný2014,
abstract = {Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem \[u \in W\_0^1 L^\Phi \left( \Omega \right) and - div\left( \{\Phi ^\{\prime \}\left( \{\left| \{\nabla u\} \right|\} \right)\frac\{\{\nabla u\}\}\{\{\left| \{\nabla u\} \right|\}\}\} \right) + V\left( x \right)\Phi ^\{\prime \}\left( \{\left| u \right|\} \right)\frac\{u\}\{\{\left| u \right|\}\} = f\left( \{x,u\} \right) + \mu h\left( x \right) in \Omega ,\] where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ℝn.},
author = {Robert Černý},
journal = {Open Mathematics},
keywords = {Orlicz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; Moser iteration; generalized -Laplacian; boundedness of weak solutions; Dirichlet problem},
language = {eng},
number = {1},
pages = {114-127},
title = {Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range},
url = {http://eudml.org/doc/269606},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Robert Černý
TI - Generalized n-Laplacian: boundedness of weak solutions to the Dirichlet problem with nonlinearity in the critical growth range
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 114
EP - 127
AB - Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem \[u \in W_0^1 L^\Phi \left( \Omega \right) and - div\left( {\Phi ^{\prime }\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}}{{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi ^{\prime }\left( {\left| u \right|} \right)\frac{u}{{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega ,\] where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω = ℝn.
LA - eng
KW - Orlicz-Sobolev spaces; Trudinger embedding; Moser-Trudinger inequality; Moser iteration; generalized -Laplacian; boundedness of weak solutions; Dirichlet problem
UR - http://eudml.org/doc/269606
ER -

References

top
  1. [1] Černý R., Generalized n-Laplacian: quasilinear nonhomogenous problem with the critical growth, Nonlinear Anal., 2011, 74(11), 3419–3439 http://dx.doi.org/10.1016/j.na.2011.03.002 Zbl1217.35201
  2. [2] Černý R., Generalized Moser-Trudinger inequality for unbounded domains and its application, NoDEA Nonlinear Differential Equations Appl., 2012, 19(5), 575–608 http://dx.doi.org/10.1007/s00030-011-0143-0 Zbl1262.46025
  3. [3] Černý R., On the Dirichlet problem for the generalized n-Laplacian: singular nonlinearity with the exponential and multiple exponential critical growth range, Math. Inequal. Appl., 2013, 16(1), 255–277 Zbl1273.35143
  4. [4] Černý R., Gurka P., Hencl S., On the Dirichlet problem for the n, α-Laplacian with the nonlinearity in the critical growth range, Nonlinear Anal., 2011, 74(15), 5189–5204 http://dx.doi.org/10.1016/j.na.2011.05.015 Zbl1225.35062
  5. [5] Černý R., Mašková S., A sharp form of an embedding into multiple exponential spaces, Czechoslovak Math. J., 2010, 60(135)(3), 751–782 Zbl1224.46064
  6. [6] Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 1996, 45(1), 39–65 Zbl0860.46022
  7. [7] Daners D., Drábek P., A priori estimates for a class of quasi-linear elliptic equations, Trans. Amer. Math. Soc., 2009, 361(12), 6475–6500 http://dx.doi.org/10.1090/S0002-9947-09-04839-9 Zbl1181.35098
  8. [8] Edmunds D.E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 1995, 44(1), 19–43 Zbl0826.47021
  9. [9] Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math., 1995, 115(2), 151–181 Zbl0829.47024
  10. [10] Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Roy. Soc. Edinburgh, 1996, 126(5), 995–1009 http://dx.doi.org/10.1017/S0308210500023210 Zbl0860.46024
  11. [11] Edmunds D.E., Gurka P., Opic B., On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 1997, 146(1), 116–150 http://dx.doi.org/10.1006/jfan.1996.3037 Zbl0860.46024
  12. [12] Edmunds D.E., Kerman P., Pick L., Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal., 2000, 170(2), 307–355 http://dx.doi.org/10.1006/jfan.1999.3508 
  13. [13] Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math., 1995, 21(1), 119–128 Zbl0835.46027
  14. [14] Fusco N., Lions P.-L., Sbordone C., Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 1996, 124(2), 561–565 http://dx.doi.org/10.1090/S0002-9939-96-03136-X Zbl0841.46023
  15. [15] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., 224, Springer, Berlin-New York, 1977 http://dx.doi.org/10.1007/978-3-642-96379-7 Zbl0361.35003
  16. [16] Gong Bao L., Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sci. Fenn. Ser. A I Math., 1990, 15(1), 27–36 
  17. [17] Hencl S., A sharp form of an embedding into exponential and double exponential spaces, J. Funct. Anal., 2003, 204(1), 196–227 http://dx.doi.org/10.1016/S0022-1236(02)00172-6 Zbl1034.46031
  18. [18] Lieberman G.M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations, 1991, 16(2–3), 311–361 http://dx.doi.org/10.1080/03605309108820761 Zbl0742.35028
  19. [19] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1970/71, 20, 1077–1092 http://dx.doi.org/10.1512/iumj.1971.20.20101 Zbl0203.43701
  20. [20] Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., 1999, 2(3), 391–467 Zbl0956.46020
  21. [21] Pokhozhaev S.I., On the imbedding S.L. Sobolev theorem for pl = n, Doklady Nauchno-Tekhn. Konferencii MÉI, MÉI, Moscow, 1965, 158–170 (in Russian) 
  22. [22] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17, 473–484 Zbl0163.36402
  23. [23] Yudovich V.I., Some estimates connected with integral operators and with solutions of elliptic equations, Soviet Math. Dokl., 1961, 2, 746–749 Zbl0144.14501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.