Elliptic curves on spinor varieties

Nicolas Perrin

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1393-1406
  • ISSN: 2391-5455

Abstract

top
We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.

How to cite

top

Nicolas Perrin. "Elliptic curves on spinor varieties." Open Mathematics 10.4 (2012): 1393-1406. <http://eudml.org/doc/269650>.

@article{NicolasPerrin2012,
abstract = {We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.},
author = {Nicolas Perrin},
journal = {Open Mathematics},
keywords = {Elliptic curve; Spinor variety; spinor variety; orthogonal Grassmannian; elliptic curve; quantum cohomology; Chow group},
language = {eng},
number = {4},
pages = {1393-1406},
title = {Elliptic curves on spinor varieties},
url = {http://eudml.org/doc/269650},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Nicolas Perrin
TI - Elliptic curves on spinor varieties
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1393
EP - 1406
AB - We prove irreducibility of the scheme of morphisms, of degree large enough, from a smooth elliptic curve to spinor varieties. We give an explicit bound on the degree.
LA - eng
KW - Elliptic curve; Spinor variety; spinor variety; orthogonal Grassmannian; elliptic curve; quantum cohomology; Chow group
UR - http://eudml.org/doc/269650
ER -

References

top
  1. [1] Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc., 1957, 7, 414–452 http://dx.doi.org/10.1112/plms/s3-7.1.414 Zbl0084.17305
  2. [2] Ballico E., On the Hilbert scheme of curves in a smooth quadric, In: Deformations of Mathematical Structures, Łódz/Lublin, 1985/87, Kluwer, Dordrecht, 1989, 127–132 http://dx.doi.org/10.1007/978-94-009-2643-1_11 
  3. [3] Bourbaki N., Éléments de Mathématique. XXVI. Groupes et Algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Ind., 1285, Hermann, Paris, 1960 
  4. [4] Brion M., Kumar S., Frobenius Splitting Methods in Geometry and Representation Theory, Progr. Math., 231, Birkhäuser, Boston, 2005 Zbl1072.14066
  5. [5] Bruguières A., The scheme of morphisms from an elliptic curve to a Grassmannian, Compositio Math., 1987, 63(1), 15–40 Zbl0664.14005
  6. [6] Chaput P.E., Manivel L., Perrin N., Quantum cohomology of minuscule homogeneous spaces, Transform. Groups, 2008, 13(1), 47–89 http://dx.doi.org/10.1007/s00031-008-9001-5 Zbl1147.14023
  7. [7] Demazure M., Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 1974, 7(1), 53–88 Zbl0312.14009
  8. [8] Iliev A., Markushevich D., Parametrization of sing Θ for a Fano 3-fold of genus 7 by moduli of vector bundles, Asian J. Math., 2007, 11(3), 427–458 Zbl1136.14031
  9. [9] Kleiman S.L., The transversality of a general translate, Compositio Math., 1974, 28, 287–297 Zbl0288.14014
  10. [10] Magyar P., Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv., 1998, 73(4), 603–636 http://dx.doi.org/10.1007/s000140050071 Zbl0951.14036
  11. [11] Pasquier B., Perrin N., Elliptic curves on some homogeneous spaces, preprint available at http://arxiv.org/abs/1105.5320 
  12. [12] Perrin N., Courbes rationnelles sur les variétés homogènes, Ann. Inst. Fourier (Grenoble), 2002, 52(1), 105–132 http://dx.doi.org/10.5802/aif.1878 
  13. [13] Perrin N., Rational curves on minuscule Schubert varieties, J. Algebra, 2005, 294(2), 431–462 http://dx.doi.org/10.1016/j.jalgebra.2005.08.031 Zbl1093.14070
  14. [14] Perrin N., Small resolutions of minuscule Schubert varieties, Compos. Math., 2007, 143(5), 1255–1312 http://dx.doi.org/10.1112/S0010437X07002734 Zbl1129.14069
  15. [15] Stembridge J.R., Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc., 1997, 349(4), 1285–1332 http://dx.doi.org/10.1090/S0002-9947-97-01805-9 Zbl0945.05064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.