Topological algebras with maximal regular ideals closed
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 1054-1059
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMati Abel. "Topological algebras with maximal regular ideals closed." Open Mathematics 10.3 (2012): 1054-1059. <http://eudml.org/doc/269677>.
@article{MatiAbel2012,
abstract = {It is shown that all maximal regular ideals in a Hausdorff topological algebra A are closed if the von Neumann bornology of A has a pseudo-basis which consists of idempotent and completant absolutely pseudoconvex sets. Moreover, all ideals in a unital commutative sequentially Mackey complete Hausdorff topological algebra A with jointly continuous multiplication and bounded elements are closed if the von Neumann bornology of A is idempotently pseudoconvex.},
author = {Mati Abel},
journal = {Open Mathematics},
keywords = {Topological algebra; von Neumann bornology; Closedness of maximal ideals; topological algebra; closedness of maximal ideals},
language = {eng},
number = {3},
pages = {1054-1059},
title = {Topological algebras with maximal regular ideals closed},
url = {http://eudml.org/doc/269677},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Mati Abel
TI - Topological algebras with maximal regular ideals closed
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 1054
EP - 1059
AB - It is shown that all maximal regular ideals in a Hausdorff topological algebra A are closed if the von Neumann bornology of A has a pseudo-basis which consists of idempotent and completant absolutely pseudoconvex sets. Moreover, all ideals in a unital commutative sequentially Mackey complete Hausdorff topological algebra A with jointly continuous multiplication and bounded elements are closed if the von Neumann bornology of A is idempotently pseudoconvex.
LA - eng
KW - Topological algebra; von Neumann bornology; Closedness of maximal ideals; topological algebra; closedness of maximal ideals
UR - http://eudml.org/doc/269677
ER -
References
top- [1] Abel M., Topological algebras with a nonempty spectrum, Tartu Riikl. Ül. Toimetised, 1989, 846, 11–24 (in Russian)
- [2] Abel M., Advertive topological algebras, In: General Topological Algebras, Tartu, October 4–7, 1999, Math. Stud. (Tartu), 1, Estonian Mathematical Society, Tartu, 2001, 14–24 Zbl1044.46038
- [3] Abel M., Topological algebras with pseudoconvexly bounded elements, Bedlewo, May 11–17, 2003, In: Topological Algebras, their Applications, and Related Topics, Banach Center Publ., 67, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2005, 21–33 http://dx.doi.org/10.4064/bc67-0-2 Zbl1091.46026
- [4] Abel M., Topological algebras with idempotently pseudoconvex von Neumann bornology, In: Topological Algebras and Applications, Athens, June 27–July 1, 2005, Contemp. Math., 427, American Mathematical Society, Providence, 2007, 15–29 Zbl1125.46037
- [5] Allan G.R., A spectral theory for locally convex alebras, Proc. London Math. Soc., 1965, 15, 399–421 http://dx.doi.org/10.1112/plms/s3-15.1.399 Zbl0138.38202
- [6] Allan G.R., Dales H.G., McClure J.P., Pseudo-Banach algebras, Studia Math., 1971, 40, 55–69 Zbl0224.46052
- [7] Balachandran V.K., Topological Algebras, North-Holland Math. Stud., 185, North-Holland, Amsterdam, 2000 http://dx.doi.org/10.1016/S0304-0208(00)80001-8
- [8] Choukri R., Sur certaines questions concernant les Q-algèbres, Extracta Math., 2001, 16(1), 79–82 Zbl0995.46033
- [9] Haralampidou M., Annihilator topological algebras, Portugal. Math., 1994, 51(1), 147–162 Zbl0806.46051
- [10] Haralampidou M., On the Krull property in topological algebras, Comment. Math. Prace Mat., 2006, 46(2), 141–162 Zbl1180.46035
- [11] Hogbe-Nlend H., Théorie des Bornologies et Applications, Lecture Notes in Math., 213, Springer, Berlin-New York, 1971 Zbl0225.46005
- [12] Hogbe-Nlend H., Les fondements de la théorie spectrale des algèbres bornologiques, Bol. Soc. Brasil. Mat., 1972, 3(1), 19–56 http://dx.doi.org/10.1007/BF02584840 Zbl0338.46042
- [13] Hogbe-Nlend H., Bornologies and Functional Analysis, North-Holland Math. Stud., 26, North-Holland, Amsterdam-New York-Oxford, 1977
- [14] Husain T., Multiplicative Functionals on Topological Algebras, Res. Notes in Math., 85, Pitman, Boston, 1983 Zbl0514.46030
- [15] Jarchow H., Locally Convex Spaces, Mathematische Leitfäden, Teubner, Stuttgart, 1981 Zbl0466.46001
- [16] Köthe G., Topological Vector Spaces. I, Grundlehren Math. Wiss., 159, Springer, New York, 1969 http://dx.doi.org/10.1007/978-3-642-64988-2 Zbl0179.17001
- [17] Ligaud J.-P., Sur les rapports entre topologies et bornologies pseudoconvexes, C. R. Acad. Sci. Paris. Sér. A-B, 1970, 271, A1058–A1060 Zbl0202.39403
- [18] Naĭmark N.A., Normed Algebras, 3rd ed., Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics, Wolters-Noordhoff, Groningen, 1972
- [19] Schaefer H.H., Wolff M.P., Topological Vector Spaces, 2nd ed., Grad. Texts in Math., 3, Springer, New York, 1999 http://dx.doi.org/10.1007/978-1-4612-1468-7 Zbl0983.46002
- [20] Waelbroeck L., Algèbres commutatives: éléments réguliers, Bull. Soc. Math. Belg., 1957, 9, 42–49 Zbl0089.31903
- [21] Waelbroeck L., Topological Vector Spaces and Algebras, Lecture Notes in Math., 230, Springer, Berlin-New York, 1971 Zbl0225.46001
- [22] Waelbroeck L., The holomorphic functional calculus and non-Banach algebras, In: Algebras in Analysis, Birmingham, 1973, Academic Press, London, 1975, 187–251
- [23] Waelbroeck L., Bornological Quotients, Mem. Cl. Sci. Collect. 4o(3), 7, Académie Royale de Belgique, Classe des Sciences, Brussels, 2005
- [24] Żelazko W., On topologization of countably generated algebras, Studia Math., 1994, 112(1), 83–88 Zbl0832.46042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.