On effective determination of symmetric-square lifts
Open Mathematics (2014)
- Volume: 12, Issue: 7, page 976-990
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topQingfeng Sun. "On effective determination of symmetric-square lifts." Open Mathematics 12.7 (2014): 976-990. <http://eudml.org/doc/269699>.
@article{QingfengSun2014,
abstract = {Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max \{4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)\} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.},
author = {Qingfeng Sun},
journal = {Open Mathematics},
keywords = {Symmetric-square lift; Effective determination; Rankin-Selberg L-function; symmetric-square lift; effective determination; Rankin-Selberg -function},
language = {eng},
number = {7},
pages = {976-990},
title = {On effective determination of symmetric-square lifts},
url = {http://eudml.org/doc/269699},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Qingfeng Sun
TI - On effective determination of symmetric-square lifts
JO - Open Mathematics
PY - 2014
VL - 12
IS - 7
SP - 976
EP - 990
AB - Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.
LA - eng
KW - Symmetric-square lift; Effective determination; Rankin-Selberg L-function; symmetric-square lift; effective determination; Rankin-Selberg -function
UR - http://eudml.org/doc/269699
ER -
References
top- [1] Chinta G., Diaconu A., Determination of a GL3 cuspform by twists of central L-values, Int. Math. Res. Not., 2005, 48, 2941–2967 http://dx.doi.org/10.1155/IMRN.2005.2941 Zbl1085.11026
- [2] Ganguly S., Hoffstein J., Sengupta J., Determining modular forms on SL2(ℤ) by central values of convolution L-functions, Math. Ann., 2009, 345(4), 843–857 http://dx.doi.org/10.1007/s00208-009-0380-2 Zbl1234.11065
- [3] Goldfeld D., Automorphic Forms and L-functions for the Group GL(n,ℝ), Cambridge Stud. Adv. Math., 99, Cambridge University Press, Cambridge, 2006
- [4] Goldfeld D., Li X., Voronoi formulas on GL(n), Int. Math. Res. Not., 2006, #86295 Zbl1144.11039
- [5] Hoffstein J., Lockhart P., Coefficients of Maass forms and the Siegel zero, Ann. Math., 1994, 140(1), 161–181 http://dx.doi.org/10.2307/2118543 Zbl0814.11032
- [6] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, American Mathematical Society, Providence, 1997 Zbl0905.11023
- [7] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
- [8] Kim H.H., Sarnak P., Appendix 2 in Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1
- [9] Li J., Determination of a GL2 automorphic cuspidal representation by twists of critical L-values, J. Number Theory, 2007, 123(2), 255–289 http://dx.doi.org/10.1016/j.jnt.2006.07.014 Zbl1173.11030
- [10] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, Int. Math. Res. Not., 2010, 21, 4025–4041 Zbl1273.11084
- [11] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, level aspect, J. Number Theory, 2011, 131(8), 1397–1408 http://dx.doi.org/10.1016/j.jnt.2011.01.014 Zbl1272.11068
- [12] Luo W., Special L-values of Rankin-Selberg convolutons, Math. Ann., 1999, 314(3), 591–600 http://dx.doi.org/10.1007/s002080050308 Zbl0932.11033
- [13] Luo W., Ramakrishnan D., Determination of modular forms by twists of critical L-values, Invent. Math., 1997, 130(2), 371–398 http://dx.doi.org/10.1007/s002220050189 Zbl0905.11024
- [14] Luo W., Ramakrishnan D., Determination of modular elliptic curves by Heegner points, Pacific J. Math., 1997, 181(3), 251–258 http://dx.doi.org/10.2140/pjm.1997.181.251 Zbl1012.11052
- [15] Munshi R., On effective determination of modular forms by twists of critical L-values, Math. Ann., 2010, 347(4), 963–978 http://dx.doi.org/10.1007/s00208-009-0465-y Zbl1223.11052
- [16] Pi Q., Determining cusp forms by central values of Rankin-Selberg L-functions, J. Number Theory, 2010, 130(10), 2283–2292 http://dx.doi.org/10.1016/j.jnt.2010.06.002 Zbl1264.11041
- [17] Pi Q., Determination of cusp forms by central values of Rankin-Selberg L-functions, Lith. Math. J., 2011, 51(4), 543–561 http://dx.doi.org/10.1007/s10986-011-9147-z Zbl1294.11067
- [18] Ramakrishnan D., Wang S., On the exceptional zeros of Rankin-Selberg L-functions, Composotio Math., 2003, 135(2), 211–244 http://dx.doi.org/10.1023/A:1021761421232 Zbl1043.11046
- [19] Sun Q., On determination of GL 3 cusp forms, Acta Arith., 2012, 151(1), 39–54 http://dx.doi.org/10.4064/aa151-1-4
- [20] Zhang Y., Determining modular forms of general level by central values of convolution L-functions, Acta Arith., 2011, 150(1), 93–103 http://dx.doi.org/10.4064/aa150-1-5 Zbl1247.11055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.