On effective determination of symmetric-square lifts

Qingfeng Sun

Open Mathematics (2014)

  • Volume: 12, Issue: 7, page 976-990
  • ISSN: 2391-5455

Abstract

top
Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.

How to cite

top

Qingfeng Sun. "On effective determination of symmetric-square lifts." Open Mathematics 12.7 (2014): 976-990. <http://eudml.org/doc/269699>.

@article{QingfengSun2014,
abstract = {Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max \{4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)\} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.},
author = {Qingfeng Sun},
journal = {Open Mathematics},
keywords = {Symmetric-square lift; Effective determination; Rankin-Selberg L-function; symmetric-square lift; effective determination; Rankin-Selberg -function},
language = {eng},
number = {7},
pages = {976-990},
title = {On effective determination of symmetric-square lifts},
url = {http://eudml.org/doc/269699},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Qingfeng Sun
TI - On effective determination of symmetric-square lifts
JO - Open Mathematics
PY - 2014
VL - 12
IS - 7
SP - 976
EP - 990
AB - Let F be the symmetric-square lift with Laplace eigenvalue λ F (Δ) = 1+4µ2. Suppose that |µ| ≤ Λ. We show that F is uniquely determined by the central values of Rankin-Selberg L-functions L(s, F ⋇ h), where h runs over the set of holomorphic Hecke eigen cusp forms of weight κ ≡ 0 (mod 4) with κ≍ϱ+ɛ, t9 = max {4(1+4θ)/(1−18θ), 8(2−9θ)/3(1−18θ)} for any 0 ≤ θ < 1/18 and any ∈ > 0. Here θ is the exponent towards the Ramanujan conjecture for GL2 Maass forms.
LA - eng
KW - Symmetric-square lift; Effective determination; Rankin-Selberg L-function; symmetric-square lift; effective determination; Rankin-Selberg -function
UR - http://eudml.org/doc/269699
ER -

References

top
  1. [1] Chinta G., Diaconu A., Determination of a GL3 cuspform by twists of central L-values, Int. Math. Res. Not., 2005, 48, 2941–2967 http://dx.doi.org/10.1155/IMRN.2005.2941 Zbl1085.11026
  2. [2] Ganguly S., Hoffstein J., Sengupta J., Determining modular forms on SL2(ℤ) by central values of convolution L-functions, Math. Ann., 2009, 345(4), 843–857 http://dx.doi.org/10.1007/s00208-009-0380-2 Zbl1234.11065
  3. [3] Goldfeld D., Automorphic Forms and L-functions for the Group GL(n,ℝ), Cambridge Stud. Adv. Math., 99, Cambridge University Press, Cambridge, 2006 
  4. [4] Goldfeld D., Li X., Voronoi formulas on GL(n), Int. Math. Res. Not., 2006, #86295 Zbl1144.11039
  5. [5] Hoffstein J., Lockhart P., Coefficients of Maass forms and the Siegel zero, Ann. Math., 1994, 140(1), 161–181 http://dx.doi.org/10.2307/2118543 Zbl0814.11032
  6. [6] Iwaniec H., Topics in Classical Automorphic Forms, Grad. Stud. Math., 17, American Mathematical Society, Providence, 1997 Zbl0905.11023
  7. [7] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
  8. [8] Kim H.H., Sarnak P., Appendix 2 in Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1 
  9. [9] Li J., Determination of a GL2 automorphic cuspidal representation by twists of critical L-values, J. Number Theory, 2007, 123(2), 255–289 http://dx.doi.org/10.1016/j.jnt.2006.07.014 Zbl1173.11030
  10. [10] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, Int. Math. Res. Not., 2010, 21, 4025–4041 Zbl1273.11084
  11. [11] Liu S.-C., Determination of GL(3) cusp forms by central values of GL(3)×GL(2) L-functions, level aspect, J. Number Theory, 2011, 131(8), 1397–1408 http://dx.doi.org/10.1016/j.jnt.2011.01.014 Zbl1272.11068
  12. [12] Luo W., Special L-values of Rankin-Selberg convolutons, Math. Ann., 1999, 314(3), 591–600 http://dx.doi.org/10.1007/s002080050308 Zbl0932.11033
  13. [13] Luo W., Ramakrishnan D., Determination of modular forms by twists of critical L-values, Invent. Math., 1997, 130(2), 371–398 http://dx.doi.org/10.1007/s002220050189 Zbl0905.11024
  14. [14] Luo W., Ramakrishnan D., Determination of modular elliptic curves by Heegner points, Pacific J. Math., 1997, 181(3), 251–258 http://dx.doi.org/10.2140/pjm.1997.181.251 Zbl1012.11052
  15. [15] Munshi R., On effective determination of modular forms by twists of critical L-values, Math. Ann., 2010, 347(4), 963–978 http://dx.doi.org/10.1007/s00208-009-0465-y Zbl1223.11052
  16. [16] Pi Q., Determining cusp forms by central values of Rankin-Selberg L-functions, J. Number Theory, 2010, 130(10), 2283–2292 http://dx.doi.org/10.1016/j.jnt.2010.06.002 Zbl1264.11041
  17. [17] Pi Q., Determination of cusp forms by central values of Rankin-Selberg L-functions, Lith. Math. J., 2011, 51(4), 543–561 http://dx.doi.org/10.1007/s10986-011-9147-z Zbl1294.11067
  18. [18] Ramakrishnan D., Wang S., On the exceptional zeros of Rankin-Selberg L-functions, Composotio Math., 2003, 135(2), 211–244 http://dx.doi.org/10.1023/A:1021761421232 Zbl1043.11046
  19. [19] Sun Q., On determination of GL 3 cusp forms, Acta Arith., 2012, 151(1), 39–54 http://dx.doi.org/10.4064/aa151-1-4 
  20. [20] Zhang Y., Determining modular forms of general level by central values of convolution L-functions, Acta Arith., 2011, 150(1), 93–103 http://dx.doi.org/10.4064/aa150-1-5 Zbl1247.11055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.