Generation of Hauptmoduln of Γ1(N) by Weierstrass units and application to class fields

Chang Kim; Ja Koo

Open Mathematics (2011)

  • Volume: 9, Issue: 6, page 1389-1402
  • ISSN: 2391-5455

Abstract

top
We show that the modular functions j 1,N generate function fields of the modular curve X 1(N), N ∈ {7; 8; 9; 10; 12}, and apply them to construct ray class fields over imaginary quadratic fields.

How to cite

top

Chang Kim, and Ja Koo. "Generation of Hauptmoduln of Γ1(N) by Weierstrass units and application to class fields." Open Mathematics 9.6 (2011): 1389-1402. <http://eudml.org/doc/269704>.

@article{ChangKim2011,
abstract = {We show that the modular functions j 1,N generate function fields of the modular curve X 1(N), N ∈ \{7; 8; 9; 10; 12\}, and apply them to construct ray class fields over imaginary quadratic fields.},
author = {Chang Kim, Ja Koo},
journal = {Open Mathematics},
keywords = {Modular curve; Modular function; Class field; Modular function:Class field},
language = {eng},
number = {6},
pages = {1389-1402},
title = {Generation of Hauptmoduln of Γ1(N) by Weierstrass units and application to class fields},
url = {http://eudml.org/doc/269704},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Chang Kim
AU - Ja Koo
TI - Generation of Hauptmoduln of Γ1(N) by Weierstrass units and application to class fields
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1389
EP - 1402
AB - We show that the modular functions j 1,N generate function fields of the modular curve X 1(N), N ∈ {7; 8; 9; 10; 12}, and apply them to construct ray class fields over imaginary quadratic fields.
LA - eng
KW - Modular curve; Modular function; Class field; Modular function:Class field
UR - http://eudml.org/doc/269704
ER -

References

top
  1. [1] Chen I., Yui N., Singular values of Thompson series, In: Groups, Difference Sets, and the Monster, Columbus, 1993, Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 1996, 255–326 http://dx.doi.org/10.1515/9783110893106.255 
  2. [2] Conway J.H., Norton S.P., Monstrous moonshine, Bull. London Math. Soc., 1979, 11(3), 308–339 http://dx.doi.org/10.1112/blms/11.3.308 Zbl0424.20010
  3. [3] Darmon H., Note on a polynomial of Emma Lehmer, Math. Comp., 1991, 56(194), 795–800 http://dx.doi.org/10.1090/S0025-5718-1991-1068821-5 
  4. [4] Deuring M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ., 1941, 14, 197–272 http://dx.doi.org/10.1007/BF02940746 Zbl0025.02003
  5. [5] Ishida N., Ishii N., Generators and defining equation of the modular function field of the group Γ1(N), Acta Arith., 2002, 101(4), 303–320 http://dx.doi.org/10.4064/aa101-4-1 Zbl1004.11036
  6. [6] Janusz G.J., Algebraic Number Fields, Pure Appl. Math., 55, Academic Press, New York-London, 1973 
  7. [7] Kim C.H., Koo J.K., On the genus of some modular curve of level N, Bull. Austral. Math. Soc., 1996, 54(2), 291–297 http://dx.doi.org/10.1017/S0004972700017755 Zbl0894.11018
  8. [8] Kim C.H., Koo J.K., Arithmetic of the modular function j 1,8, Ramanujan J., 2000, 4(3), 317–338 http://dx.doi.org/10.1023/A:1009857205327 
  9. [9] Kubert D.S., Lang S., Modular Units, Grundlehren Math. Wiss., 244 Springer, New York-Berlin, 1981 
  10. [10] Lang S., Elliptic Functions, 2nd ed., Grad. Texts in Math., 112, Springer, New York, 1987 http://dx.doi.org/10.1007/978-1-4612-4752-4 
  11. [11] Lecacheux O., Unités d’une famille de corps cycliques réeles de degré 6 liés à la courbe modulaire X 1(13), J. Number Theory, 1989, 31(1), 54–63 http://dx.doi.org/10.1016/0022-314X(89)90051-6 Zbl0664.12004
  12. [12] Lecacheux O., Unités d’une famille de corps liés à la courbe X 1(25), Ann. Inst. Fourier (Grenoble), 1990, 40(2), 237–253 http://dx.doi.org/10.5802/aif.1212 Zbl0739.11023
  13. [13] Miyake T., Modular Forms, Springer, Berlin, 1989 
  14. [14] Néron A., Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. Inst. Hautes Études Sci., 1964, 21, 5–125 http://dx.doi.org/10.1007/BF02684271 Zbl0132.41403
  15. [15] Ogg A.P., Rational points on certain elliptic modular curves, In: Analytic Number Theory, St. Louis University, St. Louis, 1972, Proc. Sympos. Pure Math., 24, American Mathematical Society, Providence, 1973, 221–231 
  16. [16] Schoeneberg B., Elliptic Modular Functions, Grundlehren Math. Wiss., 203, Springer, New York-Heidelberg, 1974 
  17. [17] Serre J.-P., Tate J., Good reduction of abelian varieties, Ann. of Math., 1968, 88, 492–517 http://dx.doi.org/10.2307/1970722 Zbl0172.46101
  18. [18] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, 11, Iwanami Shoten, Tokyo, 1971 Zbl0221.10029
  19. [19] Silverman J.H., Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math., 151, Springer, New York, 1994 Zbl0911.14015
  20. [20] Stevens G., Arithmetic on Modular Curves, Progr. Math., 20, Birkhäuser, Boston, 1982 Zbl0529.10028
  21. [21] Washington L.C., A family of cyclic quartic fields arising from modular curves, Math. Comp., 1991, 57(196), 763–775 http://dx.doi.org/10.1090/S0025-5718-1991-1094964-6 Zbl0743.11058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.