On the generalized Davenport constant and the Noether number

Kálmán Cziszter; Mátyás Domokos

Open Mathematics (2013)

  • Volume: 11, Issue: 9, page 1605-1615
  • ISSN: 2391-5455

Abstract

top
Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.

How to cite

top

Kálmán Cziszter, and Mátyás Domokos. "On the generalized Davenport constant and the Noether number." Open Mathematics 11.9 (2013): 1605-1615. <http://eudml.org/doc/269716>.

@article{KálmánCziszter2013,
abstract = {Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.},
author = {Kálmán Cziszter, Mátyás Domokos},
journal = {Open Mathematics},
keywords = {Noether number; Davenport constant; Polynomial invariants; polynomial invariants},
language = {eng},
number = {9},
pages = {1605-1615},
title = {On the generalized Davenport constant and the Noether number},
url = {http://eudml.org/doc/269716},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Kálmán Cziszter
AU - Mátyás Domokos
TI - On the generalized Davenport constant and the Noether number
JO - Open Mathematics
PY - 2013
VL - 11
IS - 9
SP - 1605
EP - 1615
AB - Known results on the generalized Davenport constant relating zero-sum sequences over a finite abelian group are extended for the generalized Noether number relating rings of polynomial invariants of an arbitrary finite group. An improved general upper degree bound for polynomial invariants of a non-cyclic finite group that cut out the zero vector is given.
LA - eng
KW - Noether number; Davenport constant; Polynomial invariants; polynomial invariants
UR - http://eudml.org/doc/269716
ER -

References

top
  1. [1] Benson D.J., Polynomial Invariants of Finite Groups, London Math. Soc. Lecture Note Ser., 190, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511565809 Zbl0864.13001
  2. [2] Cziszter K., Domokos M., Groups with large Noether bound, preprint available at http://arxiv.org/abs/1105.0679v4 Zbl1314.13012
  3. [3] Cziszter K., Domokos M., Noether’s bound for the groups with a cyclic subgroup of index two, preprint available at http://arxiv.org/abs/1205.3011v1 Zbl1307.13009
  4. [4] Delorme Ch., Ordaz O., Quiroz D., Some remarks on Davenport constant, Discrete Math., 2001, 237(1–3), 119–128 http://dx.doi.org/10.1016/S0012-365X(00)00365-4 Zbl1003.20025
  5. [5] Derksen H., Polynomial bounds for rings of invariants, Proc. Amer. Math. Soc., 2001, 129(4), 955–963 http://dx.doi.org/10.1090/S0002-9939-00-05698-7 Zbl0969.13003
  6. [6] Derksen H., Kemper G., Computational Invariant Theory, Invariant Theory Algebr. Transform. Groups, I, Encyclopaedia Math. Sci., 130, Springer, Berlin, 2002 http://dx.doi.org/10.1007/978-3-662-04958-7 
  7. [7] Domokos M., Hegedűs P., Noether’s bound for polynomial invariants of finite groups, Arch. Math. (Basel), 2000, 74(3), 161–167 http://dx.doi.org/10.1007/s000130050426 Zbl0967.13004
  8. [8] Fleischmann P., The Noether bound in invariant theory of finite groups, Adv. Math., 2000, 156(1), 23–32 http://dx.doi.org/10.1006/aima.2000.1952 Zbl0973.13003
  9. [9] Fleischmann P., On invariant theory of finite groups, In: Invariant Theory in All Characteristics, CRM Proc. Lecture Notes, 35, American Mathematical Society, Providence, 2004, 43–69 Zbl1083.13002
  10. [10] Fogarty J., On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc., 2001, 7, 5–7 http://dx.doi.org/10.1090/S1079-6762-01-00088-9 Zbl0980.13003
  11. [11] Freeze M., Schmid W.A., Remarks on a generalization of the Davenport constant, Discrete Math., 2010, 310(23), 3373–3389 http://dx.doi.org/10.1016/j.disc.2010.07.028 Zbl1228.05302
  12. [12] Gao W., Geroldinger A., Zero-sum problems in finite abelian groups: a survey, Expo. Math., 2006, 24(4), 337–369 http://dx.doi.org/10.1016/j.exmath.2006.07.002 Zbl1122.11013
  13. [13] Geroldinger A., Halter-Koch F., Non-Unique Factorizations, Pure Appl. Math. (Boca Raton), 278, Chapman & Hall/CRC, Boca Raton-London-New York, 2006 Zbl1117.13004
  14. [14] Halter-Koch F., A generalization of Davenport’s constant and its arithmetical applications, Colloq. Math., 1992, 63(2), 203–210 Zbl0760.11031
  15. [15] Kemper G., Separating invariants, J. Symbolic Comput., 2009, 44(9), 1212–1222 http://dx.doi.org/10.1016/j.jsc.2008.02.012 Zbl1172.13001
  16. [16] Knop F., On Noether’s and Weyl’s bound in positive characteristic, In: Invariant Theory in All Characteristics, CRM Proc. Lecture Notes, 35, American Mathematical Society, Providence, 2004, 175–188 Zbl1070.13007
  17. [17] Kohls M., Kraft H., Degree bounds for separating invariants, Math. Res. Lett., 2010, 17(6), 1171–1182 Zbl1230.13010
  18. [18] Noether E., Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 1915, 77(1), 89–92 http://dx.doi.org/10.1007/BF01456821 Zbl45.0198.01
  19. [19] Popov V.L., The constructive theory of invariants, Izv. Akad. Nauk SSSR Ser. Mat., 1981, 45(5), 1100–1120 (in Russian) Zbl0478.14006
  20. [20] Schmid B.J., Finite groups and invariant theory, In: Topics in Invariant Theory, Paris, 1989/1990, Lect. Notes in Math., 1478, Springer, Berlin, 1991, 35–66 http://dx.doi.org/10.1007/BFb0083501 Zbl0770.20004
  21. [21] Sezer M., Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra, 2002, 254(2), 252–263 http://dx.doi.org/10.1016/S0021-8693(02)00018-2 Zbl1058.13005
  22. [22] Weyl H., The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, 1939 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.