Groups with large Noether bound

Kálmán Cziszter[1]; Mátyás Domokos[2]

  • [1] Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary
  • [2] Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 909-944
  • ISSN: 0373-0956

Abstract

top
The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that –apart from four sporadic exceptions– these are exactly the groups with a cyclic subgroup of index at most two.

How to cite

top

Cziszter, Kálmán, and Domokos, Mátyás. "Groups with large Noether bound." Annales de l’institut Fourier 64.3 (2014): 909-944. <http://eudml.org/doc/275588>.

@article{Cziszter2014,
abstract = {The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that –apart from four sporadic exceptions– these are exactly the groups with a cyclic subgroup of index at most two.},
affiliation = {Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary; Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary},
author = {Cziszter, Kálmán, Domokos, Mátyás},
journal = {Annales de l’institut Fourier},
keywords = {Noether bound; polynomial invariant; zero-sum sequence},
language = {eng},
number = {3},
pages = {909-944},
publisher = {Association des Annales de l’institut Fourier},
title = {Groups with large Noether bound},
url = {http://eudml.org/doc/275588},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Cziszter, Kálmán
AU - Domokos, Mátyás
TI - Groups with large Noether bound
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 909
EP - 944
AB - The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that –apart from four sporadic exceptions– these are exactly the groups with a cyclic subgroup of index at most two.
LA - eng
KW - Noether bound; polynomial invariant; zero-sum sequence
UR - http://eudml.org/doc/275588
ER -

References

top
  1. D. J. Benson, Polynomial Invariants of Finite Groups, (1993), Cambride University Press Zbl0864.13001MR1249931
  2. Y. Berkovich, Groups of Prime Power Order, I (2008), de Gruyter, Berlin, New York Zbl1229.20001
  3. K. Brown, Cohomology of Groups, 87 (1982), Springer Zbl0584.20036MR672956
  4. R. M. Bryant, G. Kemper, Global degree bounds and the transfer principle, J. Algebra 284 (2005), 80-90 Zbl1085.13001MR2115005
  5. W. Burnside, Theory of Groups of Finite Order, (1911), Cambridge University Press Zbl42.0151.02
  6. M. J. Collins, The characterization of the Suzuki groups by their Sylow 2 -subgroups, Math. Z. 123 (1971), 32-48 Zbl0212.36105MR308252
  7. K. Cziszter, The Noether number of the non-abelian group of order 3p, Periodica Math. Hung. 68 (2014), 150-159 Zbl06330547MR3217554
  8. K. Cziszter, M. Domokos, On the generalized Davenport constant and the Noether number, Cent. Eur. J. Math. 11 (2013), 1605-1615 Zbl1282.13012MR3071927
  9. K. Cziszter, M. Domokos, The Noether bound for the groups with a cyclic subgroup of index two, J. Algebra 399 (2014), 546-560 Zbl1307.13009MR3144602
  10. Ch. Delorme, O. Ordaz, D. Quiroz, Some remarks on Davenport constant, Discrete Mathematics 237 (2001), 119-128 Zbl1003.20025MR1835655
  11. H. Derksen, G. Kemper, Computational Invariant Theory, 130 (2002), Springer-Verlag Zbl1011.13003MR1918599
  12. H. Derksen, G. Kemper, On Global Degree Bounds for Invariants, CRM Proceedings and Lecture Notes 35 (2003), 37-41 Zbl1072.14056MR2066457
  13. Jacques Dixmier, Sur les invariants du groupe symétrique dans certaines représentations. II, Topics in invariant theory (Paris, 1989/1990) 1478 (1991), 1-34, Springer, Berlin Zbl0735.20004MR1180986
  14. M. Domokos, P. Hegedűs, Noether’s bound for polynomial invariants of finite groups, Arch. Math. (Basel) 74 (2000), 161-167 Zbl0967.13004MR1739493
  15. P. Fleischmann, On invariant theory of finite groups, Invariant theory in all characteristics 35 (2004), 43-69, Amer. Math. Soc., Providence, RI Zbl1083.13002MR2066458
  16. P. Fleishmann, The Noether bound in invariant theory of finite groups, Adv. Math. 156 (2000), 23-32 Zbl0973.13003MR1800251
  17. J. Fogarty, On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5-7 Zbl0980.13003MR1826990
  18. W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369 Zbl1122.11013MR2313123
  19. A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, (2006), Chapman & Hall/CRC Zbl1113.11002MR2194494
  20. M. Göbel, Computing bases of permutation-invariant polynomials, J. Symbolic Computation 19 (1995), 285-291 Zbl0832.13006MR1339909
  21. F.D. Grosshans, Vector invariants in arbitrary characteristic, Transformation Groups 12 (2007), 499-514 Zbl1148.13002MR2356320
  22. F. Halter-Koch, A generalization of Davenport’s constant and its arithmetical applications, Colloquium Mathematicum LXIII (1992), 203-210 Zbl0760.11031MR1180633
  23. G. Higman, Suzuki 2 -groups, Illinois Journal of Mathematics 7 (1963), 79-95 Zbl0112.02107MR143815
  24. D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-531 Zbl22.0133.01MR1510634
  25. W. C. Huffman, Polynomial Invariants of Finite linear Groups of degree two, Canad. J. Math 32 (1980), 317-330 Zbl0442.20037MR571926
  26. B. Huppert, Endliche Gruppen I, (1967), Springer-Verlag, Berlin-Heidelberg-New York Zbl0412.20002MR224703
  27. G. Kemper, Separating invariants, Journal of Symbolic Computation 44 (2009), 1212-1222 Zbl1172.13001MR2532166
  28. F. Knop, On Noether’s and Weyl’s bound in positive characteristic, Invariant theory in all characteristics 35 (2004), 175-188, Amer. Math. Soc., Providence, RI Zbl1070.13007MR2066464
  29. M. Neusel, L. Smith, Invariant Theory of Finite Groups, (2001), AMS Zbl0999.13002MR1869812
  30. E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92 Zbl45.0198.01MR1511848
  31. E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p, Nachr. Ges. Wiss. Göttingen (1926), 28-36 Zbl52.0106.01
  32. V. M. Pawale, Invariants of semi-direct products of cyclic groups, (1999) 
  33. V. L. Popov, E.B. Vinberg, Invariant Theory, Algebraic Geometry IV 55 (1994), Springer-Verlag, Berlin-Heidelberg Zbl0789.14008
  34. D. R. Richman, Invariants of finite groups over fields of characteristic p, Adv. Math. 124 (1996), 25-48 Zbl0879.13004MR1423197
  35. P. Roquette, Realisierung von Darstellungen endlicher nilpotenten Gruppen, Arch. Math. 9 (1958), 241-250 Zbl0083.25002MR97452
  36. B. J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) 1478 (1991), 35-66, Springer, Berlin Zbl0770.20004MR1180987
  37. J. P. Serre, Representations linéares des groupes finis, (1998), Hermann, Paris Zbl0926.20003
  38. M. Sezer, Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra 254 (2002), 252-263 Zbl1058.13005MR1933869
  39. J. A. Dias da Silva, Y. O. Hamidoune, Cyclic Spaces for Grassmann Derivatives and Additive Theory, Bull. London Math. Soc. 26 (1994), 140-146 Zbl0819.11007MR1272299
  40. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437 Zbl0159.30804MR230809
  41. D. Wehlau, The Noether number in invariant theory, Comptes Rendus Math. Rep. Acad. Sci. Canada 28 (2006), 39-62 Zbl1108.13008MR2257602
  42. H. Weyl, The Classical Groups, (1939), Princeton University Press, Princeton Zbl65.0058.02MR1488158
  43. H. Zassenhaus, Über endliche Fastkörper, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 11 (1935), 187-220 Zbl0011.10302MR3069653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.