Groups with large Noether bound
Kálmán Cziszter[1]; Mátyás Domokos[2]
- [1] Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary
- [2] Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 909-944
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCziszter, Kálmán, and Domokos, Mátyás. "Groups with large Noether bound." Annales de l’institut Fourier 64.3 (2014): 909-944. <http://eudml.org/doc/275588>.
@article{Cziszter2014,
abstract = {The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that –apart from four sporadic exceptions– these are exactly the groups with a cyclic subgroup of index at most two.},
affiliation = {Central European University, Department of Mathematics and its Applications, Nádor u. 9, 1051 Budapest, Hungary; Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary},
author = {Cziszter, Kálmán, Domokos, Mátyás},
journal = {Annales de l’institut Fourier},
keywords = {Noether bound; polynomial invariant; zero-sum sequence},
language = {eng},
number = {3},
pages = {909-944},
publisher = {Association des Annales de l’institut Fourier},
title = {Groups with large Noether bound},
url = {http://eudml.org/doc/275588},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Cziszter, Kálmán
AU - Domokos, Mátyás
TI - Groups with large Noether bound
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 909
EP - 944
AB - The finite groups having an indecomposable polynomial invariant of degree at least half the order of the group are classified. It turns out that –apart from four sporadic exceptions– these are exactly the groups with a cyclic subgroup of index at most two.
LA - eng
KW - Noether bound; polynomial invariant; zero-sum sequence
UR - http://eudml.org/doc/275588
ER -
References
top- D. J. Benson, Polynomial Invariants of Finite Groups, (1993), Cambride University Press Zbl0864.13001MR1249931
- Y. Berkovich, Groups of Prime Power Order, I (2008), de Gruyter, Berlin, New York Zbl1229.20001
- K. Brown, Cohomology of Groups, 87 (1982), Springer Zbl0584.20036MR672956
- R. M. Bryant, G. Kemper, Global degree bounds and the transfer principle, J. Algebra 284 (2005), 80-90 Zbl1085.13001MR2115005
- W. Burnside, Theory of Groups of Finite Order, (1911), Cambridge University Press Zbl42.0151.02
- M. J. Collins, The characterization of the Suzuki groups by their Sylow -subgroups, Math. Z. 123 (1971), 32-48 Zbl0212.36105MR308252
- K. Cziszter, The Noether number of the non-abelian group of order 3p, Periodica Math. Hung. 68 (2014), 150-159 Zbl06330547MR3217554
- K. Cziszter, M. Domokos, On the generalized Davenport constant and the Noether number, Cent. Eur. J. Math. 11 (2013), 1605-1615 Zbl1282.13012MR3071927
- K. Cziszter, M. Domokos, The Noether bound for the groups with a cyclic subgroup of index two, J. Algebra 399 (2014), 546-560 Zbl1307.13009MR3144602
- Ch. Delorme, O. Ordaz, D. Quiroz, Some remarks on Davenport constant, Discrete Mathematics 237 (2001), 119-128 Zbl1003.20025MR1835655
- H. Derksen, G. Kemper, Computational Invariant Theory, 130 (2002), Springer-Verlag Zbl1011.13003MR1918599
- H. Derksen, G. Kemper, On Global Degree Bounds for Invariants, CRM Proceedings and Lecture Notes 35 (2003), 37-41 Zbl1072.14056MR2066457
- Jacques Dixmier, Sur les invariants du groupe symétrique dans certaines représentations. II, Topics in invariant theory (Paris, 1989/1990) 1478 (1991), 1-34, Springer, Berlin Zbl0735.20004MR1180986
- M. Domokos, P. Hegedűs, Noether’s bound for polynomial invariants of finite groups, Arch. Math. (Basel) 74 (2000), 161-167 Zbl0967.13004MR1739493
- P. Fleischmann, On invariant theory of finite groups, Invariant theory in all characteristics 35 (2004), 43-69, Amer. Math. Soc., Providence, RI Zbl1083.13002MR2066458
- P. Fleishmann, The Noether bound in invariant theory of finite groups, Adv. Math. 156 (2000), 23-32 Zbl0973.13003MR1800251
- J. Fogarty, On Noether’s bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5-7 Zbl0980.13003MR1826990
- W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337-369 Zbl1122.11013MR2313123
- A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, (2006), Chapman & Hall/CRC Zbl1113.11002MR2194494
- M. Göbel, Computing bases of permutation-invariant polynomials, J. Symbolic Computation 19 (1995), 285-291 Zbl0832.13006MR1339909
- F.D. Grosshans, Vector invariants in arbitrary characteristic, Transformation Groups 12 (2007), 499-514 Zbl1148.13002MR2356320
- F. Halter-Koch, A generalization of Davenport’s constant and its arithmetical applications, Colloquium Mathematicum LXIII (1992), 203-210 Zbl0760.11031MR1180633
- G. Higman, Suzuki -groups, Illinois Journal of Mathematics 7 (1963), 79-95 Zbl0112.02107MR143815
- D. Hilbert, Über die Theorie der algebraischen Formen, Math. Ann. 36 (1890), 473-531 Zbl22.0133.01MR1510634
- W. C. Huffman, Polynomial Invariants of Finite linear Groups of degree two, Canad. J. Math 32 (1980), 317-330 Zbl0442.20037MR571926
- B. Huppert, Endliche Gruppen I, (1967), Springer-Verlag, Berlin-Heidelberg-New York Zbl0412.20002MR224703
- G. Kemper, Separating invariants, Journal of Symbolic Computation 44 (2009), 1212-1222 Zbl1172.13001MR2532166
- F. Knop, On Noether’s and Weyl’s bound in positive characteristic, Invariant theory in all characteristics 35 (2004), 175-188, Amer. Math. Soc., Providence, RI Zbl1070.13007MR2066464
- M. Neusel, L. Smith, Invariant Theory of Finite Groups, (2001), AMS Zbl0999.13002MR1869812
- E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89-92 Zbl45.0198.01MR1511848
- E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p, Nachr. Ges. Wiss. Göttingen (1926), 28-36 Zbl52.0106.01
- V. M. Pawale, Invariants of semi-direct products of cyclic groups, (1999)
- V. L. Popov, E.B. Vinberg, Invariant Theory, Algebraic Geometry IV 55 (1994), Springer-Verlag, Berlin-Heidelberg Zbl0789.14008
- D. R. Richman, Invariants of finite groups over fields of characteristic p, Adv. Math. 124 (1996), 25-48 Zbl0879.13004MR1423197
- P. Roquette, Realisierung von Darstellungen endlicher nilpotenten Gruppen, Arch. Math. 9 (1958), 241-250 Zbl0083.25002MR97452
- B. J. Schmid, Finite groups and invariant theory, Topics in invariant theory (Paris, 1989/1990) 1478 (1991), 35-66, Springer, Berlin Zbl0770.20004MR1180987
- J. P. Serre, Representations linéares des groupes finis, (1998), Hermann, Paris Zbl0926.20003
- M. Sezer, Sharpening the generalized Noether bound in the invariant theory of finite groups, J. Algebra 254 (2002), 252-263 Zbl1058.13005MR1933869
- J. A. Dias da Silva, Y. O. Hamidoune, Cyclic Spaces for Grassmann Derivatives and Additive Theory, Bull. London Math. Soc. 26 (1994), 140-146 Zbl0819.11007MR1272299
- J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-437 Zbl0159.30804MR230809
- D. Wehlau, The Noether number in invariant theory, Comptes Rendus Math. Rep. Acad. Sci. Canada 28 (2006), 39-62 Zbl1108.13008MR2257602
- H. Weyl, The Classical Groups, (1939), Princeton University Press, Princeton Zbl65.0058.02MR1488158
- H. Zassenhaus, Über endliche Fastkörper, Abhandlungen aus dem Mathematischen Seminar der Hamburgische Universität 11 (1935), 187-220 Zbl0011.10302MR3069653
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.