An existence result for an interior electromagnetic casting problem

Mohammed Barkatou; Diaraf Seck; Idrissa Ly

Open Mathematics (2006)

  • Volume: 4, Issue: 4, page 573-584
  • ISSN: 2391-5455

Abstract

top
This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.

How to cite

top

Mohammed Barkatou, Diaraf Seck, and Idrissa Ly. "An existence result for an interior electromagnetic casting problem." Open Mathematics 4.4 (2006): 573-584. <http://eudml.org/doc/269789>.

@article{MohammedBarkatou2006,
abstract = {This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.},
author = {Mohammed Barkatou, Diaraf Seck, Idrissa Ly},
journal = {Open Mathematics},
keywords = {35B50; 35J05; 35R35},
language = {eng},
number = {4},
pages = {573-584},
title = {An existence result for an interior electromagnetic casting problem},
url = {http://eudml.org/doc/269789},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Mohammed Barkatou
AU - Diaraf Seck
AU - Idrissa Ly
TI - An existence result for an interior electromagnetic casting problem
JO - Open Mathematics
PY - 2006
VL - 4
IS - 4
SP - 573
EP - 584
AB - This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.
LA - eng
KW - 35B50; 35J05; 35R35
UR - http://eudml.org/doc/269789
ER -

References

top
  1. [1] M. Barkatou: “Sufficient condition of existence for a free boundary problem for the p-Laplacian”, Ann. Sci. Math. Québec, Vol. 26(2), (2002), pp. 123–132. Zbl1054.35141
  2. [2] M. Barkatou: D. Seck and I. Ly: “An existence result for a quadrature surface free boundary problem”, Centr. Eur. J. Math., Vol. 3(1), (2005), pp. 39–57, to appear. http://dx.doi.org/10.2478/BF02475654 Zbl1207.35106
  3. [3] M. Barkatou:: Some geometric properties for a class of non Lipschitz-domains, New York J. of Math, Vol. 8, (2002), pp. 189–213. Zbl1066.35028
  4. [4] D. Bucur and P. Trebeschi: “Shape Optimization Problems Governed by Nonlinear State Equations”, Proc. Roy. Sc. Edinburgh, Vol. 128A, (1998), (1998), pp. 945–963 Zbl0918.49030
  5. [5] D. Chenais: “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., Vol. 52, (1975), pp. 189–289. http://dx.doi.org/10.1016/0022-247X(75)90091-8 
  6. [6] R. Dautray and J.L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. I et II, Masson, Paris, 1984. 
  7. [7] J. Decloux: On the two-Dimensional Magnetic Shaping Problem Without Surface tension, Ecole Polytechnique Fédérale de Lausanne, Suisse, 1990. 
  8. [8] E. Dibenedetto:: “C 1+α local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Analysis., Vol. 7, (1983), pp. 827–850. http://dx.doi.org/10.1016/0362-546X(83)90061-5 
  9. [9] D. Gilbarg and N.S. Trudinger: Elliptic partial equations of second order, Springer-Verlag, 1983. Zbl0562.35001
  10. [10] M. Hayouni and A. Novruzi: “Sufficient condition for existence of solution of a free boundary problem”, Quart. Appl. Math., to appear. Zbl1054.35146
  11. [11] A. Henrot: “Continuity with respect to the domain for the laplacian: a survey”, Control and Cybernetics, Vol. 23(3), (1994), pp. 427–443. Zbl0822.35029
  12. [12] A. Henrot and M. Pierre: “About Critical Points of The Energy in an Electromagnetic Shaping Problem”, In: J.P. Zolésio (Ed): Lecture Notes in Control and Information Sciences, Boundary Control and Boundary Variation, Vol. 178, Sophia Antipolis, 1991, pp. 238–252 Zbl0820.35139
  13. [13] A. Henrot and M. Pierre: “About Existence of Equilibrium in Electromagnetic Casting”, Quater. Appl. Math., Vol. XLIX, (1991), pp. 563–575. Zbl0731.76092
  14. [14] M.V. Keldyš: “On the solvability and the stability of the Dirichlet problem”, Amer. Math. Soc. Trans., Vol. 2–51, (1966), pp. 1–73. 
  15. [15] J.L. Lewis: Regularity of the derivatives of solutions to certain degenerate elliptic equations., Indiana Univ. Math. J., Vol. 32, (1983), pp. 849–858. http://dx.doi.org/10.1512/iumj.1983.32.32058 
  16. [16] G.M. Lieberman: “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., Vol. 12, (1988) pp. 1203–1219. http://dx.doi.org/10.1016/0362-546X(88)90053-3 
  17. [17] F. Murat and J. Simon: “Quelques résultats sur le contrôle par un domaine géométrique”, Publ. du labo. d’Anal. Num., Paris VI, (1974) pp. 1–46. 
  18. [18] A. Novruzi: Contribution en optimisation de formes et Applications, Thesis(PhD), Université Henri Poincaré Nancy, 1997. 
  19. [19] J. Sokolowski and J.P. Zolesio: Introduction to shape optimization: shape sensitity analysis, Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1992. 
  20. [20] P. Tolksdorf: “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations, Vol. 8(7), (1983), pp. 773–817. Zbl0515.35024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.