# An existence result for an interior electromagnetic casting problem

Mohammed Barkatou; Diaraf Seck; Idrissa Ly

Open Mathematics (2006)

- Volume: 4, Issue: 4, page 573-584
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topMohammed Barkatou, Diaraf Seck, and Idrissa Ly. "An existence result for an interior electromagnetic casting problem." Open Mathematics 4.4 (2006): 573-584. <http://eudml.org/doc/269789>.

@article{MohammedBarkatou2006,

abstract = {This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.},

author = {Mohammed Barkatou, Diaraf Seck, Idrissa Ly},

journal = {Open Mathematics},

keywords = {35B50; 35J05; 35R35},

language = {eng},

number = {4},

pages = {573-584},

title = {An existence result for an interior electromagnetic casting problem},

url = {http://eudml.org/doc/269789},

volume = {4},

year = {2006},

}

TY - JOUR

AU - Mohammed Barkatou

AU - Diaraf Seck

AU - Idrissa Ly

TI - An existence result for an interior electromagnetic casting problem

JO - Open Mathematics

PY - 2006

VL - 4

IS - 4

SP - 573

EP - 584

AB - This paper deals with an interior electromagnetic casting (free boundary) problem. We begin by showing that the associated shape optimization problem has a solution which is of class C 2. Then, using the shape derivative and the maximum principle, we give a sufficient condition that the minimum obtained solves our problem.

LA - eng

KW - 35B50; 35J05; 35R35

UR - http://eudml.org/doc/269789

ER -

## References

top- [1] M. Barkatou: “Sufficient condition of existence for a free boundary problem for the p-Laplacian”, Ann. Sci. Math. Québec, Vol. 26(2), (2002), pp. 123–132. Zbl1054.35141
- [2] M. Barkatou: D. Seck and I. Ly: “An existence result for a quadrature surface free boundary problem”, Centr. Eur. J. Math., Vol. 3(1), (2005), pp. 39–57, to appear. http://dx.doi.org/10.2478/BF02475654 Zbl1207.35106
- [3] M. Barkatou:: Some geometric properties for a class of non Lipschitz-domains, New York J. of Math, Vol. 8, (2002), pp. 189–213. Zbl1066.35028
- [4] D. Bucur and P. Trebeschi: “Shape Optimization Problems Governed by Nonlinear State Equations”, Proc. Roy. Sc. Edinburgh, Vol. 128A, (1998), (1998), pp. 945–963 Zbl0918.49030
- [5] D. Chenais: “On the existence of a solution in a domain identification problem”, J. Math. Anal. Appl., Vol. 52, (1975), pp. 189–289. http://dx.doi.org/10.1016/0022-247X(75)90091-8
- [6] R. Dautray and J.L. Lions: Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. I et II, Masson, Paris, 1984.
- [7] J. Decloux: On the two-Dimensional Magnetic Shaping Problem Without Surface tension, Ecole Polytechnique Fédérale de Lausanne, Suisse, 1990.
- [8] E. Dibenedetto:: “C 1+α local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Analysis., Vol. 7, (1983), pp. 827–850. http://dx.doi.org/10.1016/0362-546X(83)90061-5
- [9] D. Gilbarg and N.S. Trudinger: Elliptic partial equations of second order, Springer-Verlag, 1983. Zbl0562.35001
- [10] M. Hayouni and A. Novruzi: “Sufficient condition for existence of solution of a free boundary problem”, Quart. Appl. Math., to appear. Zbl1054.35146
- [11] A. Henrot: “Continuity with respect to the domain for the laplacian: a survey”, Control and Cybernetics, Vol. 23(3), (1994), pp. 427–443. Zbl0822.35029
- [12] A. Henrot and M. Pierre: “About Critical Points of The Energy in an Electromagnetic Shaping Problem”, In: J.P. Zolésio (Ed): Lecture Notes in Control and Information Sciences, Boundary Control and Boundary Variation, Vol. 178, Sophia Antipolis, 1991, pp. 238–252 Zbl0820.35139
- [13] A. Henrot and M. Pierre: “About Existence of Equilibrium in Electromagnetic Casting”, Quater. Appl. Math., Vol. XLIX, (1991), pp. 563–575. Zbl0731.76092
- [14] M.V. Keldyš: “On the solvability and the stability of the Dirichlet problem”, Amer. Math. Soc. Trans., Vol. 2–51, (1966), pp. 1–73.
- [15] J.L. Lewis: Regularity of the derivatives of solutions to certain degenerate elliptic equations., Indiana Univ. Math. J., Vol. 32, (1983), pp. 849–858. http://dx.doi.org/10.1512/iumj.1983.32.32058
- [16] G.M. Lieberman: “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., Vol. 12, (1988) pp. 1203–1219. http://dx.doi.org/10.1016/0362-546X(88)90053-3
- [17] F. Murat and J. Simon: “Quelques résultats sur le contrôle par un domaine géométrique”, Publ. du labo. d’Anal. Num., Paris VI, (1974) pp. 1–46.
- [18] A. Novruzi: Contribution en optimisation de formes et Applications, Thesis(PhD), Université Henri Poincaré Nancy, 1997.
- [19] J. Sokolowski and J.P. Zolesio: Introduction to shape optimization: shape sensitity analysis, Springer Series in Computational Mathematics, Vol. 10, Springer, Berlin, 1992.
- [20] P. Tolksdorf: “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations, Vol. 8(7), (1983), pp. 773–817. Zbl0515.35024

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.