Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity
Open Mathematics (2014)
- Volume: 12, Issue: 4, page 574-583
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Atiyah M.F., Bott R., The moment map and equivariant cohomology, Topology, 1984, 23(1), 1–28 http://dx.doi.org/10.1016/0040-9383(84)90021-1 Zbl0521.58025
- [2] Bérczi G., Szenes A., Thom polynomials of Morin singularities, Ann. of Math., 2012, 175(2), 567–629 http://dx.doi.org/10.4007/annals.2012.175.2.4 Zbl1247.58021
- [3] Berline N., Vergne M., Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J., 1983, 50(2), 539–549 http://dx.doi.org/10.1215/S0012-7094-83-05024-X Zbl0515.58007
- [4] Borel A., Seminar on Transformation Groups, Ann. of Math. Stud., 46, Princeton University Press, Princeton, 1960
- [5] Fehér L.M., Rimányi R., Thom series of contact singularities, Ann. of Math., 2012, 176(3), 1381–1426 http://dx.doi.org/10.4007/annals.2012.176.3.1 Zbl1264.32023
- [6] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0979-9
- [7] Ginzburg V.A., Equivariant cohomology and Kähler geometry, Functional Anal. Appl., 1987, 21(4), 271–283 http://dx.doi.org/10.1007/BF01077801 Zbl0656.53062
- [8] Hsiang W., Cohomology Theory of Topological Transformation Groups, Ergeb. Math. Grenzgeb., 85, Springer, New York-Heidelberg, 1975 http://dx.doi.org/10.1007/978-3-642-66052-8
- [9] Jeffrey L.C., Kirwan F.C., Localization for nonabelian group actions, Topology, 1995, 34(2), 291–327 http://dx.doi.org/10.1016/0040-9383(94)00028-J
- [10] Jeffrey L.C., Kirwan F.C., Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math., 1998, 148(1), 109–196 http://dx.doi.org/10.2307/120993 Zbl0949.14021
- [11] Kazarian M., On Lagrange and symmetric degeneracy loci, preprint available at http://www.newton.ac.uk/preprints/NI00028.pdf
- [12] Quillen D., The spectrum of an equivariant cohomology ring: I, Ann. of Math., 1971, 94(3), 549–572 http://dx.doi.org/10.2307/1970770 Zbl0247.57013
- [13] Rimányi R., Quiver polynomials in iterated residue form, preprint available at http://arxiv.org/abs/1302.2580 Zbl06376534
- [14] Weber A., Equivariant Chern classes and localization theorem, J. Singul., 2012, 5, 153–176 Zbl1292.14009