Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

Gyula Y. Katona; Morteza Faghani; Ali Reza Ashrafi

Discussiones Mathematicae Graph Theory (2014)

  • Volume: 34, Issue: 4, page 751-768
  • ISSN: 2083-5892

Abstract

top
The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

How to cite

top

Gyula Y. Katona, Morteza Faghani, and Ali Reza Ashrafi. "Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes." Discussiones Mathematicae Graph Theory 34.4 (2014): 751-768. <http://eudml.org/doc/269815>.

@article{GyulaY2014,
abstract = {The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.},
author = {Gyula Y. Katona, Morteza Faghani, Ali Reza Ashrafi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {centrosymmetric matrix; fullerene graph; energy.; energy},
language = {eng},
number = {4},
pages = {751-768},
title = {Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes},
url = {http://eudml.org/doc/269815},
volume = {34},
year = {2014},
}

TY - JOUR
AU - Gyula Y. Katona
AU - Morteza Faghani
AU - Ali Reza Ashrafi
TI - Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes
JO - Discussiones Mathematicae Graph Theory
PY - 2014
VL - 34
IS - 4
SP - 751
EP - 768
AB - The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.
LA - eng
KW - centrosymmetric matrix; fullerene graph; energy.; energy
UR - http://eudml.org/doc/269815
ER -

References

top
  1. [1] A. Cantoni and P. Buter, Eigenvalues and eigenvectors of symmetric centrosymmet- ric matrices, Linear Algebra Appl. 13 (1976) 275-288. doi:10.1016/0024-3795(76)90101-4 
  2. [2] D. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra (North-Holland Publishing Co., Amsterdam, 1988). Zbl0634.05054
  3. [3] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010). Zbl1211.05002
  4. [4] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Clarendom Press, Oxford, 1995). 
  5. [5] P.W. Fowler and W. Myrvold, Most fullerenes have no centrosymmetric labelling, MATCH Commun. Math. Comput. Chem. 71 (2014) 93-97. 
  6. [6] A. Graovac, O. Ori, M. Faghani and A.R. Ashrafi, Distance property of fullerenes, Iranian J. Math. Chem. 2 (2011) 99-107. Zbl1263.05105
  7. [7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 1-22. 
  8. [8] I. Gutman, Bounds for all graph energies, Chem. Phys. Lett. 528 (2012) 72-74. 
  9. [9] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37. doi:10.1016/j.laa.2005.09.008 Zbl1092.05045
  10. [10] I. Gutman, S. Zare Firoozabadi, J.A. de la Peña and J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442. Zbl1150.05024
  11. [11] H. Hua, M. Faghani and A.R. Ashrafi, The Wiener and Wiener polarity indices of a class of fullerenes with exactly 12n carbon atoms, MATCH Commun. Math. Comput. Chem. 71 (2014) 361-372. 
  12. [12] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, C60 : buckmin- sterfullerene, Nature 318 (1985) 162-163. doi:10.1038/318162a0 
  13. [13] Z. Liu and H. Faßbender, Some properties of generalized K-centrosymmetric H- matrices, J. Comput. Appl. Math. 215 (2008) 38-48. doi:10.1016/j.cam.2007.03.026 Zbl1142.65033
  14. [14] Z.-Y. Liu, Some properties of centrosymmetric matrices, Appl. Math. Comput. 141 (2003) 297-306. doi:10.1016/S0096-3003(02)00254-0 
  15. [15] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475. doi:10.1016/j.jmaa.2006.03.072 Zbl1113.15016
  16. [16] O. Rojo and H. Rojo, Some results on symmetric circulant matrices and on sym- metric centrosymmetric matrices, Linear Algebra Appl. 392 (2004) 211-233. doi:10.1016/j.laa.2004.06.013 Zbl1063.15006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.