Page 1 Next

Displaying 1 – 20 of 32

Showing per page

A Maximum Resonant Set of Polyomino Graphs

Heping Zhang, Xiangqian Zhou (2016)

Discussiones Mathematicae Graph Theory

A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square) with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper,...

Boolean Biology: Introducing Boolean Networks and Finite Dynamical Systems Models to Biology and Mathematics Courses

R. Robeva, B. Kirkwood, R. Davies (2011)

Mathematical Modelling of Natural Phenomena

Since the release of the Bio 2010 report in 2003, significant emphasis has been placed on initiating changes in the way undergraduate biology and mathematics courses are taught and on creating new educational materials to facilitate those changes. Quantitative approaches, including mathematical models, are now considered critical for the education of the next generation of biologists. In response, mathematics departments across the country have initiated changes to their introductory calculus sequence,...

Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

Gyula Y. Katona, Morteza Faghani, Ali Reza Ashrafi (2014)

Discussiones Mathematicae Graph Theory

The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

Dürer polyhedra: the dark side of melancholia

Patrick W. Fowler, Peter E. John (2002)

Discussiones Mathematicae Graph Theory

Dürer's engraving Melencolia I famously includes a perspective view of a solid polyhedral block of which the visible portion is an 8-circuit bounding a pentagon-triple+triangle patch. The polyhedron is usually taken to be a cube truncated on antipodal corners, but an infinity of others are compatible with the visible patch. Construction of all cubic polyhedra compatible with the visible portion (i.e., Dürer Polyhedra) is discussed, explicit graphs and symmetries are listed for small cases ( ≤ 18...

Extremal Matching Energy of Complements of Trees

Tingzeng Wu, Weigen Yan, Heping Zhang (2016)

Discussiones Mathematicae Graph Theory

Gutman and Wagner proposed the concept of the matching energy which is defined as the sum of the absolute values of the zeros of the matching polynomial of a graph. And they pointed out that the chemical applications of matching energy go back to the 1970s. Let T be a tree with n vertices. In this paper, we characterize the trees whose complements have the maximal, second-maximal and minimal matching energy. Furthermore, we determine the trees with edge-independence number p whose complements have...

Isomerism as Manifestation of Intrinsic Symmetry of Molecules: Lunn–Senior’s Theory

Iliev, Valentin (2009)

Serdica Journal of Computing

This article presents the principal results of the doctoral thesis “Isomerism as internal symmetry of molecules” by Valentin Vankov Iliev (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 15 December, 2008.This paper is an extended review of our doctoral thesis “Isomerism as Intrinsic Symmetry of Molecules” in which we present, continue, generalize, and trace out Lunn–Senior’s theory of isomerism...

Kinetical systems

Ladislav Adamec (1997)

Applications of Mathematics

The aim of the paper is to give some preliminary information concerning a class of nonlinear differential equations often used in physical chemistry and biology. Such systems are often very large and it is well known that where studying properties of such systems difficulties rapidly increase with their dimension. One way how to get over the difficulties is to use special forms of such systems.

Nanonetworks: The graph theory framework for modeling nanoscale systems

Jelena Živkovic, Bosiljka Tadic (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Nanonetwork is defined as a mathematical model of nanosize objects with biological, physical and chemical attributes, which are interconnected within certain dynamical process. To demonstrate the potentials of this modeling approach for quantitative study of complexity at nanoscale, in this survey, we consider three kinds of nanonetworks: Genes of a yeast are connected by weighted links corresponding to their coexpression along the cell cycle; Gold nanoparticles, arranged on a substrate, are linked...

Nordhaus-Gaddum-Type Results for Resistance Distance-Based Graph Invariants

Kinkar Ch. Das, Yujun Yang, Kexiang Xu (2016)

Discussiones Mathematicae Graph Theory

Two decades ago, resistance distance was introduced to characterize “chemical distance” in (molecular) graphs. In this paper, we consider three resistance distance-based graph invariants, namely, the Kirchhoff index, the additive degree-Kirchhoff index, and the multiplicative degree-Kirchhoff index. Some Nordhaus-Gaddum-type results for these three molecular structure descriptors are obtained. In addition, a relation between these Kirchhoffian indices is established.

Currently displaying 1 – 20 of 32

Page 1 Next