Geodesic mapping onto Kählerian spaces of the first kind
Milan Zlatanović; Irena Hinterleitner; Marija Najdanović
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 1113-1122
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZlatanović, Milan, Hinterleitner, Irena, and Najdanović, Marija. "Geodesic mapping onto Kählerian spaces of the first kind." Czechoslovak Mathematical Journal 64.4 (2014): 1113-1122. <http://eudml.org/doc/269829>.
@article{Zlatanović2014,
abstract = {In the present paper a generalized Kählerian space $\mathbb \{G\} \{\underset\{1\}\{\mathbb \{K\}\}_N\}$ of the first kind is considered as a generalized Riemannian space $\mathbb \{GR\}_N$ with almost complex structure $\smash\{F^h_i\}$ that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb \{GR\}_N\rightarrow \mathbb \{G\}\underset\{1\}\{\mathbb \{\overline\{K\}\}\}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb \{G\}\{\underset\{1\}\{\mathbb \{K\}\}\}_N$.},
author = {Zlatanović, Milan, Hinterleitner, Irena, Najdanović, Marija},
journal = {Czechoslovak Mathematical Journal},
keywords = {geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space; geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space},
language = {eng},
number = {4},
pages = {1113-1122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geodesic mapping onto Kählerian spaces of the first kind},
url = {http://eudml.org/doc/269829},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Zlatanović, Milan
AU - Hinterleitner, Irena
AU - Najdanović, Marija
TI - Geodesic mapping onto Kählerian spaces of the first kind
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1113
EP - 1122
AB - In the present paper a generalized Kählerian space $\mathbb {G} {\underset{1}{\mathbb {K}}_N}$ of the first kind is considered as a generalized Riemannian space $\mathbb {GR}_N$ with almost complex structure $\smash{F^h_i}$ that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb {GR}_N\rightarrow \mathbb {G}\underset{1}{\mathbb {\overline{K}}}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb {G}{\underset{1}{\mathbb {K}}}_N$.
LA - eng
KW - geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space; geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space
UR - http://eudml.org/doc/269829
ER -
References
top- Domašev, V. V., Mikeš, J., 10.1007/BF01153160, Math. Notes 23 (1978), 160-163 translated from Matematicheskie Zametki 23 (1978), Russian 297-303. (1978) MR0492674DOI10.1007/BF01153160
- Einstein, A., The Meaning of Relativity, Princeton University Press Princeton, N. J. (1955). (1955) Zbl0067.20404MR0076496
- Einstein, A., 10.4153/CJM-1950-011-4, Can. J. Math. 2 (1950), 120-128. (1950) Zbl0039.38802MR0034134DOI10.4153/CJM-1950-011-4
- Einstein, A., 10.2307/1969197, Ann. Math. (2) 46 (1945), 578-584. (1945) Zbl0060.44113MR0014296DOI10.2307/1969197
- Eisenhart, L. P., 10.1073/pnas.37.5.311, Proc. Natl. Acad. Sci. USA 37 (1951), 311-315. (1951) Zbl0043.37301MR0043530DOI10.1073/pnas.37.5.311
- Hinterleitner, I., Mikeš, J., On -planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111-118. (2007) Zbl1150.53009MR2367758
- Mikeš, J., 10.1007/BF02414875, J. Math. Sci., New York 89 (1998), 1334-1353 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 30 (1995), Russian. (1995) MR1619720DOI10.1007/BF02414875
- Mikeš, J., 10.1007/BF02365193, J. Math. Sci., New York 78 (1996), 311-333 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 11 (1994), Russian. (1994) MR1384327DOI10.1007/BF02365193
- Mikeš, J., Geodesic mappings of Ricci 2-symmetric Riemannian spaces, Math. Notes 28 (1981), 922-924 translated from Matematicheskie Zametki 28 313-317 (1980), Russian. (1980) MR0587405
- Mikeš, J., Starko, G. A., -concircular vector fields and holomorphically projective mappings on Kählerian spaces, Proceedings of the 16th Winter School on ``Geometry and Physics'', Srn'ı, Czech Republic, 1996 Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 46 Palermo (1997), 123-127 Jan Slovák et al. (1997) MR1469028
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, Palacký University, Faculty of Science Olomouc (2009). (2009) Zbl1222.53002MR2682926
- Minčić, S. M., New commutation formulas in the non-symmetric affine connexion space, Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. (1977) Zbl0377.53008MR0482552
- Minčić, S. M., Ricci identities in the space of non-symmetric affine connexion, Mat. Vesn., N. Ser. 10 (1973), 161-172. (1973) Zbl0278.53012MR0341310
- Minčić, S. M., Stanković, M. S., Equitorsion geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. (1997) Zbl0886.53035MR1472941
- Minčić, S., Stanković, M., On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces, Mat. Vesn. 49 (1997), 27-33. (1997) Zbl0949.53013MR1491944
- Minčić, S. M., Stanković, M. S., Velimirović, L. S., Generalized Kählerian spaces, Filomat 15 (2001), 167-174. (2001) MR2105108
- Moffat, J. W., Gravitational theory, galaxy rotation curves and cosmology without dark matter, J. Cosmol. Astropart. Phys. (electronic only) 2005 (2005), Article No. 003, 28 pages. (2005) Zbl1236.83045MR2139872
- Ōtsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57-78. (1954) Zbl0057.14101MR0066024
- Prvanović, M., A note on holomorphically projective transformations of the Kähler spaces, Tensor, New Ser. 35 (1981), 99-104. (1981) Zbl0467.53032MR0614141
- Pujar, S. S., On non-metric semi-symmetric complex connection in a Kaehlerian manifold, Bull. Calcutta Math. Soc. 91 (1999), 313-322. (1999) Zbl0957.53039MR1748542
- Pušić, N., On a curvature-type invariant of a family of metric holomorphically semi-symmetric connections on anti-Kähler spaces, Indian J. Math. 54 (2012), 57-74. (2012) Zbl1268.53020MR2976295
- Sinjukov, N. S., Geodesic mappings of Riemannian spaces, Nauka Moskva Russian (1979). (1979) MR0552022
- Stanković, M. S., Minčić, S. M., Velimirović, L. S., 10.1007/s10587-004-6419-3, Czech. Math. J. 54 (2004), 701-715. (2004) MR2086727DOI10.1007/s10587-004-6419-3
- Stanković, M. S., Zlatanović, M. L., Velimirović, L. S., 10.1007/s10587-010-0059-6, Czech. Math. J. 60 (2010), 635-653. (2010) Zbl1224.53031MR2672406DOI10.1007/s10587-010-0059-6
- Tashiro, Y., On a holomorphically projective correspondence in an almost complex space, Math. J. Okayama Univ. 6 (1957), 147-152. (1957) Zbl0077.35501MR0087181
- Yano, K., Differential Geometry on Complex and Almost Complex Spaces, International Series of Monographs in Pure and Applied Mathematics 49 Pergamon Press, Macmillan, New York (1965). (1965) Zbl0127.12405MR0187181
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.