Geodesic mapping onto Kählerian spaces of the first kind

Milan Zlatanović; Irena Hinterleitner; Marija Najdanović

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 1113-1122
  • ISSN: 0011-4642

Abstract

top
In the present paper a generalized Kählerian space 𝔾 𝕂 1 N of the first kind is considered as a generalized Riemannian space 𝔾ℝ N with almost complex structure F i h that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings f : 𝔾ℝ N 𝔾 𝕂 ¯ 1 N with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space 𝔾 𝕂 1 N .

How to cite

top

Zlatanović, Milan, Hinterleitner, Irena, and Najdanović, Marija. "Geodesic mapping onto Kählerian spaces of the first kind." Czechoslovak Mathematical Journal 64.4 (2014): 1113-1122. <http://eudml.org/doc/269829>.

@article{Zlatanović2014,
abstract = {In the present paper a generalized Kählerian space $\mathbb \{G\} \{\underset\{1\}\{\mathbb \{K\}\}_N\}$ of the first kind is considered as a generalized Riemannian space $\mathbb \{GR\}_N$ with almost complex structure $\smash\{F^h_i\}$ that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb \{GR\}_N\rightarrow \mathbb \{G\}\underset\{1\}\{\mathbb \{\overline\{K\}\}\}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb \{G\}\{\underset\{1\}\{\mathbb \{K\}\}\}_N$.},
author = {Zlatanović, Milan, Hinterleitner, Irena, Najdanović, Marija},
journal = {Czechoslovak Mathematical Journal},
keywords = {geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space; geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space},
language = {eng},
number = {4},
pages = {1113-1122},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Geodesic mapping onto Kählerian spaces of the first kind},
url = {http://eudml.org/doc/269829},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Zlatanović, Milan
AU - Hinterleitner, Irena
AU - Najdanović, Marija
TI - Geodesic mapping onto Kählerian spaces of the first kind
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1113
EP - 1122
AB - In the present paper a generalized Kählerian space $\mathbb {G} {\underset{1}{\mathbb {K}}_N}$ of the first kind is considered as a generalized Riemannian space $\mathbb {GR}_N$ with almost complex structure $\smash{F^h_i}$ that is covariantly constant with respect to the first kind of covariant derivative. Using a non-symmetric metric tensor we find necessary and sufficient conditions for geodesic mappings $f\colon \mathbb {GR}_N\rightarrow \mathbb {G}\underset{1}{\mathbb {\overline{K}}}_N$ with respect to the four kinds of covariant derivatives. These conditions have the form of a closed system of partial differential equations in covariant derivatives with respect to unknown components of the metric tensor and the complex structure of the Kählerian space $\mathbb {G}{\underset{1}{\mathbb {K}}}_N$.
LA - eng
KW - geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space; geodesic mapping; equitorsion geodesic mapping; generalized Kählerian space
UR - http://eudml.org/doc/269829
ER -

References

top
  1. Domašev, V. V., Mikeš, J., 10.1007/BF01153160, Math. Notes 23 (1978), 160-163 translated from Matematicheskie Zametki 23 (1978), Russian 297-303. (1978) MR0492674DOI10.1007/BF01153160
  2. Einstein, A., The Meaning of Relativity, Princeton University Press Princeton, N. J. (1955). (1955) Zbl0067.20404MR0076496
  3. Einstein, A., 10.4153/CJM-1950-011-4, Can. J. Math. 2 (1950), 120-128. (1950) Zbl0039.38802MR0034134DOI10.4153/CJM-1950-011-4
  4. Einstein, A., 10.2307/1969197, Ann. Math. (2) 46 (1945), 578-584. (1945) Zbl0060.44113MR0014296DOI10.2307/1969197
  5. Eisenhart, L. P., 10.1073/pnas.37.5.311, Proc. Natl. Acad. Sci. USA 37 (1951), 311-315. (1951) Zbl0043.37301MR0043530DOI10.1073/pnas.37.5.311
  6. Hinterleitner, I., Mikeš, J., On F -planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111-118. (2007) Zbl1150.53009MR2367758
  7. Mikeš, J., 10.1007/BF02414875, J. Math. Sci., New York 89 (1998), 1334-1353 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 30 (1995), Russian. (1995) MR1619720DOI10.1007/BF02414875
  8. Mikeš, J., 10.1007/BF02365193, J. Math. Sci., New York 78 (1996), 311-333 translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory 11 (1994), Russian. (1994) MR1384327DOI10.1007/BF02365193
  9. Mikeš, J., Geodesic mappings of Ricci 2-symmetric Riemannian spaces, Math. Notes 28 (1981), 922-924 translated from Matematicheskie Zametki 28 313-317 (1980), Russian. (1980) MR0587405
  10. Mikeš, J., Starko, G. A., K -concircular vector fields and holomorphically projective mappings on Kählerian spaces, Proceedings of the 16th Winter School on ``Geometry and Physics'', Srn'ı, Czech Republic, 1996 Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 46 Palermo (1997), 123-127 Jan Slovák et al. (1997) MR1469028
  11. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, Palacký University, Faculty of Science Olomouc (2009). (2009) Zbl1222.53002MR2682926
  12. Minčić, S. M., New commutation formulas in the non-symmetric affine connexion space, Publ. Inst. Math., Nouv. Sér. 22 (1977), 189-199. (1977) Zbl0377.53008MR0482552
  13. Minčić, S. M., Ricci identities in the space of non-symmetric affine connexion, Mat. Vesn., N. Ser. 10 (1973), 161-172. (1973) Zbl0278.53012MR0341310
  14. Minčić, S. M., Stanković, M. S., Equitorsion geodesic mappings of generalized Riemannian spaces, Publ. Inst. Math., Nouv. Sér. 61 (1997), 97-104. (1997) Zbl0886.53035MR1472941
  15. Minčić, S., Stanković, M., On geodesic mappings of general affine connexion spaces and of generalized Riemannian spaces, Mat. Vesn. 49 (1997), 27-33. (1997) Zbl0949.53013MR1491944
  16. Minčić, S. M., Stanković, M. S., Velimirović, L. S., Generalized Kählerian spaces, Filomat 15 (2001), 167-174. (2001) MR2105108
  17. Moffat, J. W., Gravitational theory, galaxy rotation curves and cosmology without dark matter, J. Cosmol. Astropart. Phys. (electronic only) 2005 (2005), Article No. 003, 28 pages. (2005) Zbl1236.83045MR2139872
  18. Ōtsuki, T., Tashiro, Y., On curves in Kaehlerian spaces, Math. J. Okayama Univ. 4 (1954), 57-78. (1954) Zbl0057.14101MR0066024
  19. Prvanović, M., A note on holomorphically projective transformations of the Kähler spaces, Tensor, New Ser. 35 (1981), 99-104. (1981) Zbl0467.53032MR0614141
  20. Pujar, S. S., On non-metric semi-symmetric complex connection in a Kaehlerian manifold, Bull. Calcutta Math. Soc. 91 (1999), 313-322. (1999) Zbl0957.53039MR1748542
  21. Pušić, N., On a curvature-type invariant of a family of metric holomorphically semi-symmetric connections on anti-Kähler spaces, Indian J. Math. 54 (2012), 57-74. (2012) Zbl1268.53020MR2976295
  22. Sinjukov, N. S., Geodesic mappings of Riemannian spaces, Nauka Moskva Russian (1979). (1979) MR0552022
  23. Stanković, M. S., Minčić, S. M., Velimirović, L. S., 10.1007/s10587-004-6419-3, Czech. Math. J. 54 (2004), 701-715. (2004) MR2086727DOI10.1007/s10587-004-6419-3
  24. Stanković, M. S., Zlatanović, M. L., Velimirović, L. S., 10.1007/s10587-010-0059-6, Czech. Math. J. 60 (2010), 635-653. (2010) Zbl1224.53031MR2672406DOI10.1007/s10587-010-0059-6
  25. Tashiro, Y., On a holomorphically projective correspondence in an almost complex space, Math. J. Okayama Univ. 6 (1957), 147-152. (1957) Zbl0077.35501MR0087181
  26. Yano, K., Differential Geometry on Complex and Almost Complex Spaces, International Series of Monographs in Pure and Applied Mathematics 49 Pergamon Press, Macmillan, New York (1965). (1965) Zbl0127.12405MR0187181

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.