Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind

Mića S. Stanković; Milan Lj. Zlatanović; Ljubica S. Velimirović

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 635-653
  • ISSN: 0011-4642

Abstract

top
In this paper we define generalized Kählerian spaces of the first kind ( G K 1 N ) given by (2.1)–(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ( G K 1 N and G K ¯ 1 N ) and for them we find invariant geometric objects.

How to cite

top

Stanković, Mića S., Zlatanović, Milan Lj., and Velimirović, Ljubica S.. "Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind." Czechoslovak Mathematical Journal 60.3 (2010): 635-653. <http://eudml.org/doc/38032>.

@article{Stanković2010,
abstract = {In this paper we define generalized Kählerian spaces of the first kind $(G\underset\{1\}\{K\}_N)$ given by (2.1)–(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ($G\underset\{1\}\{K\}_N$ and $G\underset\{1\}\{\overline\{K\}\}_N$) and for them we find invariant geometric objects.},
author = {Stanković, Mića S., Zlatanović, Milan Lj., Velimirović, Ljubica S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized Riemannian space; Kählerian space; generalized Kählerian space of the first kind; equitorsion holomorphically projective mappings; holomorphically projective parameter; generalized Riemannian space; Kählerian space; generalized Kählerian space of the first kind; equitorsion holomorphically projective mappings; holomorphically projective parameter},
language = {eng},
number = {3},
pages = {635-653},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind},
url = {http://eudml.org/doc/38032},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Stanković, Mića S.
AU - Zlatanović, Milan Lj.
AU - Velimirović, Ljubica S.
TI - Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 635
EP - 653
AB - In this paper we define generalized Kählerian spaces of the first kind $(G\underset{1}{K}_N)$ given by (2.1)–(2.3). For them we consider hollomorphically projective mappings with invariant complex structure. Also, we consider equitorsion geodesic mapping between these two spaces ($G\underset{1}{K}_N$ and $G\underset{1}{\overline{K}}_N$) and for them we find invariant geometric objects.
LA - eng
KW - generalized Riemannian space; Kählerian space; generalized Kählerian space of the first kind; equitorsion holomorphically projective mappings; holomorphically projective parameter; generalized Riemannian space; Kählerian space; generalized Kählerian space of the first kind; equitorsion holomorphically projective mappings; holomorphically projective parameter
UR - http://eudml.org/doc/38032
ER -

References

top
  1. Chodorová, M., Mikeš, J., A note to K-torse forming vector fields on compact manifolds with complex structure, Acta Physica Debrecina 42 (2008), 11-18. (2008) MR2754424
  2. Einstein, A., 10.4153/CJM-1950-011-4, Can. J. Math. 2 (1950), 120-128. (1950) Zbl0039.38802MR0034134DOI10.4153/CJM-1950-011-4
  3. Einstein, A., 10.1002/andp.19163540702, Ann. Phys. 49 (1916), 769-822. (1916) DOI10.1002/andp.19163540702
  4. Einstein, A., Relativistic theory of the non-symmetic field, In: The Meaning of Relativity, 5th ed., Appendix II, Vol. 49 Princeton University Press Princeton (1955). (1955) 
  5. Einstein, A., 10.2307/1969197, Ann. Math. 46 (1945), 578-584. (1945) Zbl0060.44113MR0014296DOI10.2307/1969197
  6. Eisenhart, L. P., 10.1073/pnas.37.5.311, Proc. Natl. Acad. Sci. 37 (1951), 311-315. (1951) MR0043530DOI10.1073/pnas.37.5.311
  7. Hinterleitner, I., Mikeš, J., On F -planar mappings of spaces with affine connections, Note Mat. 27 (2007), 111-118. (2007) MR2367758
  8. Hinterleitner, I., Mikeš, J., Stránská, J., 10.3103/S1066369X08040026, Russ. Math. 52 (2008), 13-18. (2008) MR2445169DOI10.3103/S1066369X08040026
  9. Jukl, M., Juklová, L., Mikeš, J., On Generalized Trace Decompositions Problems. Proc. 3rd International Conference dedicated to 85th birthday of Professor Kudrijavcev, (2008), 299-314. (2008) 
  10. Mikeš, J., 10.1007/BF02414875, J. Math. Sci. 89 (1998), 1334-1353. (1998) MR1619720DOI10.1007/BF02414875
  11. Mikeš, J., Starko, G. A., K -concircular vector fields and holomorphically projective mappings on Kählerian spaces, Suppl. Rend. Circ. Palermo 46 (1997), 123-127. (1997) MR1469028
  12. Minči'c, S. M., Ricci identities in the space of non-symmetric affine connection, Mat. Ves. 10 (1973), 161-172. (1973) MR0341310
  13. Minči'c, S. M., New commutation formulas in the non-symmetric affine connection space, Publ. Inst. Math. (N. S) 22 (1977), 189-199. (1977) MR0482552
  14. Minči'c, S. M., Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connection, Coll. Math. Soc. János Bolyai 31 (1982), 445-460. (1982) MR0706937
  15. Minčić, S. M., Stanković, M. S., Velimirović, Lj. S., Generalized Kählerian spaces, Filomat 15 (2001), 167-174. (2001) MR2105108
  16. Otsuki, T., Tasiro, Y., On curves in Kählerian spaces, Math. J. Okayama Univ. 4 (1954), 57-78. (1954) MR0066024
  17. Prvanovi'c, M., A note on holomorphically projective transformations in Kähler space, Tensor, N.S. 35 (1981), 99-104. (1981) MR0614141
  18. Radulovi'c, Zh., Holomorphically-projective mappings of parabolically-Kählerian spaces, Math. Montisnigri 8 (1997), 159-184. (1997) MR1623833
  19. Shiha, M., On the theory of holomorphically projective mappings of parabolically Kählerian spaces, In: Differential Geometry and Its Applications. Proc. 5th International Conference, Opava, August 24-28, 1992 Silesian University Opava (1993), 157-160. (1993) Zbl0805.53017MR1255537
  20. Sinyukov, N. S., Geodesic Mappings of Riemannian Spaces, Nauka Moscow (1979), Russian. (1979) Zbl0637.53020MR0552022
  21. Stanković, M. S., Minčić, S. M., Velimirović, Lj. S., 10.1007/s10587-004-6419-3, Czech. Math. J. 54(129) (2004), 701-715. (2004) MR2086727DOI10.1007/s10587-004-6419-3
  22. Vavříková, H., Mikeš, J., Pokorná, O., Starko, G., 10.3103/S1066369X07010021, Russ. Math. 51 (2007), 8-12. (2007) MR2335593DOI10.3103/S1066369X07010021
  23. Yano, K., Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press New York (1965). (1965) MR0187181
  24. Yano, K., 10.2996/kmj/1138846996, Kodai Math. Semin. Rep. 26 (1975), 137-151. (1975) Zbl0302.53013MR0377736DOI10.2996/kmj/1138846996

Citations in EuDML Documents

top
  1. Irena Hinterleitner, Josef Mikeš, On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds
  2. Irena Hinterleitner, Josef Mikeš, Patrik Peška, On F 2 ε -planar mappings of (pseudo-) Riemannian manifolds
  3. Milan Zlatanović, Irena Hinterleitner, Marija Najdanović, Geodesic mapping onto Kählerian spaces of the first kind
  4. Mića S. Stanković, Svetislav M. Minčić, Ljubica S. Velimirović, Milan Lj. Zlatanović, On equitorsion geodesic mappings of general affine connection spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.