Entropy of scalar reaction-diffusion equations
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 597-605
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSlijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139.4 (2014): 597-605. <http://eudml.org/doc/269839>.
@article{Slijepčević2014,
abstract = {We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms.},
author = {Slijepčević, Siniša},
journal = {Mathematica Bohemica},
keywords = {reaction-diffusion equation; attractor; invariant measure; entropy; Poincaré-Bendixson theorem; reaction-diffusion equation; attractor; invariant measure; entropy; Poincaré-Bendixson theorem},
language = {eng},
number = {4},
pages = {597-605},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Entropy of scalar reaction-diffusion equations},
url = {http://eudml.org/doc/269839},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Slijepčević, Siniša
TI - Entropy of scalar reaction-diffusion equations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 597
EP - 605
AB - We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms.
LA - eng
KW - reaction-diffusion equation; attractor; invariant measure; entropy; Poincaré-Bendixson theorem; reaction-diffusion equation; attractor; invariant measure; entropy; Poincaré-Bendixson theorem
UR - http://eudml.org/doc/269839
ER -
References
top- Angenent, S., The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), 79-96. (1988) Zbl0644.35050MR0953678
- Eckmann, J.-P., Rougemont, J., 10.1007/s002200050508, Commun. Math. Phys. 199 (1998), 441-470. (1998) Zbl1057.35508MR1666859DOI10.1007/s002200050508
- Fiedler, B., Mallet-Paret, J., 10.1007/BF00251553, Arch. Ration. Mech. Anal. 107 (1989), 325-345. (1989) Zbl0704.35070MR1004714DOI10.1007/BF00251553
- Gallay, T., Slijepčević, S., 10.1023/A:1016624010828, J. Dyn. Differ. Equations 13 (2001), 757-789. (2001) Zbl1003.35085MR1860285DOI10.1023/A:1016624010828
- Gallay, T., Slijepčević, S., Distribution of energy and convergence to equilibria in extended dissipative systems, (to appear) in J. Dyn. Differ. Equations.
- Joly, R., Raugel, G., 10.1016/j.anihpc.2010.09.001, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27 (2010), 1397-1440. (2010) Zbl1213.35046MR2738326DOI10.1016/j.anihpc.2010.09.001
- Katok, A., Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications 54 Cambridge University Press, Cambridge (1995). (1995) Zbl0878.58020MR1326374
- Miranville, A., Zelik, S., 10.1016/S1874-5717(08)00003-0, Handbook of differential equations: Evolutionary Equations. Vol. IV C. M. Dafermos, M. Pokorný 103-200 Elsevier/North-Holland, Amsterdam (2008). (2008) Zbl1221.37158MR2508165DOI10.1016/S1874-5717(08)00003-0
- Ollagnier, J. Moulin, Pinchon, D., 10.4064/sm-72-2-151-159, Studia Math. 72 (1982), 151-159. (1982) MR0665415DOI10.4064/sm-72-2-151-159
- Slijepčević, S., 10.3934/dcds.2000.6.503, Discrete Contin. Dyn. Syst. 6 (2000), 503-518. (2000) Zbl1009.37004MR1757384DOI10.3934/dcds.2000.6.503
- Slijepčević, S., 10.1088/0951-7715/26/7/2051, Nonlinearity 26 (2013), 2051-2079. (2013) Zbl1309.37075MR3078107DOI10.1088/0951-7715/26/7/2051
- Slijepčević, S., Ergodic Poincaré-Bendixson theorem for scalar reaction-diffusion equations. Preprint, .
- Slijepčević, S., 10.3934/dcds.2014.34.2983, Discrete Contin. Dyn. Syst. 34 (2014), 2983-3011. (2014) Zbl1293.34017MR3177671DOI10.3934/dcds.2014.34.2983
- Turaev, D., Zelik, S., 10.3934/dcds.2010.28.1713, Discrete Contin. Dyn. Syst. 28 (2010), 1713-1751. (2010) Zbl1213.35376MR2679729DOI10.3934/dcds.2010.28.1713
- Zelik, S., Formally gradient reaction-diffusion systems in have zero spatio-temporal topological entropy, Discrete Contin. Dyn. Syst. suppl. vol. (2003), 960-966. (2003) MR2018206
- Zelik, S., Mielke, A., Multi-pulse evolution and space-time chaos in dissipative systems, Mem. Am. Math. Soc. 198 (2009), 1-97. (2009) Zbl1163.37003MR2499464
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.