Quasitriangular Hopf group algebras and braided monoidal categories

Shiyin Zhao; Jing Wang; Hui-Xiang Chen

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 893-909
  • ISSN: 0011-4642

Abstract

top
Let π be a group, and H be a semi-Hopf π -algebra. We first show that the category H of left π -modules over H is a monoidal category with a suitably defined tensor product and each element α in π induces a strict monoidal functor F α from H to itself. Then we introduce the concept of quasitriangular semi-Hopf π -algebra, and show that a semi-Hopf π -algebra H is quasitriangular if and only if the category H is a braided monoidal category and F α is a strict braided monoidal functor for any α π . Finally, we give two examples of Hopf π -algebras and describe the categories of modules over them.

How to cite

top

Zhao, Shiyin, Wang, Jing, and Chen, Hui-Xiang. "Quasitriangular Hopf group algebras and braided monoidal categories." Czechoslovak Mathematical Journal 64.4 (2014): 893-909. <http://eudml.org/doc/269848>.

@article{Zhao2014,
abstract = {Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H\{\mathcal \{M\}\}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_\{\alpha \}$ from $_H\{\mathcal \{M\}\}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal \{M\}$ is a braided monoidal category and $F_\{\alpha \}$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them.},
author = {Zhao, Shiyin, Wang, Jing, Chen, Hui-Xiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf $\pi $-algebra; $H$-$\pi $-modules; braided monoidal category; braided monoidal functor; semi-Hopf $\pi $-algebras; -modules; quasitriangular semi-Hopf algebras; braided monoidal categories; braided monoidal functors; tensor products; coalgebras},
language = {eng},
number = {4},
pages = {893-909},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quasitriangular Hopf group algebras and braided monoidal categories},
url = {http://eudml.org/doc/269848},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Zhao, Shiyin
AU - Wang, Jing
AU - Chen, Hui-Xiang
TI - Quasitriangular Hopf group algebras and braided monoidal categories
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 893
EP - 909
AB - Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal {M}}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal {M}}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal {M}$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them.
LA - eng
KW - Hopf $\pi $-algebra; $H$-$\pi $-modules; braided monoidal category; braided monoidal functor; semi-Hopf $\pi $-algebras; -modules; quasitriangular semi-Hopf algebras; braided monoidal categories; braided monoidal functors; tensor products; coalgebras
UR - http://eudml.org/doc/269848
ER -

References

top
  1. Chen, H., 10.1007/BF02885536, Chin. Sci. Bull. 44 (1999), 510-513. (1999) Zbl1008.16037MR1708131DOI10.1007/BF02885536
  2. Chen, H., Oystaeyen, F. Van, Zhang, Y., 10.1090/S0002-9939-2013-11823-X, Proc. Am. Math. Soc. 142 (2014), 765-775. (2014) MR3148512DOI10.1090/S0002-9939-2013-11823-X
  3. Cibils, C., 10.1007/BF02096879, Commun. Math. Phys. 157 (1993), 459-477. (1993) Zbl0806.16039MR1243707DOI10.1007/BF02096879
  4. Drinfel'd, V. G., Quantum Groups, Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). (1987) Zbl0667.16003MR0934283
  5. Kassel, C., Quantum Groups, Graduate Texts in Mathematics 155 Springer, New York (1995). (1995) Zbl0808.17003MR1321145
  6. Montgomery, S., Hopf Algebras and Their Actions on Rings, Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). (1993) Zbl0793.16029MR1243637
  7. Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series W. A. Benjamin, New York (1969). (1969) Zbl0203.31601MR0252485
  8. Turaev, V., Crossed group-categories, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. (2008) Zbl1185.18009MR2500054
  9. Turaev, V., Homotopy field theory in dimension 3 and crossed group-categories, ArXiv: math/0005291v1 [math.GT] (2000). (2000) 
  10. Virelizier, A., 10.1016/S0022-4049(01)00125-6, J. Pure Appl. Algebra 171 (2002), 75-122. (2002) Zbl1011.16023MR1903398DOI10.1016/S0022-4049(01)00125-6
  11. Wang, S.-H., 10.1080/00927870601041334, Commun. Algebra 35 (2007), 77-101. (2007) Zbl1139.16029MR2287553DOI10.1080/00927870601041334
  12. Yetter, D. N., 10.1017/S0305004100069139, Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. (1990) Zbl0712.17014MR1074714DOI10.1017/S0305004100069139
  13. Zhu, M., Chen, H., Li, L., 10.1007/s11464-011-0152-7, Front. Math. China 6 (2011), 1009-1020. (2011) Zbl1229.16024MR2836864DOI10.1007/s11464-011-0152-7
  14. Zhu, M., Chen, H., Li, L., 10.1007/s13369-011-0086-0, Arab. J. Sci. Eng. 36 (2011), 1063-1070. (2011) MR2845533DOI10.1007/s13369-011-0086-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.