Two notions which affected nonlinear analysis (Bernard Bolzano lecture)
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 699-711
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDrábek, Pavel. "Two notions which affected nonlinear analysis (Bernard Bolzano lecture)." Mathematica Bohemica 139.4 (2014): 699-711. <http://eudml.org/doc/269858>.
@article{Drábek2014,
abstract = {General mathematical theories usually originate from the investigation of particular problems and notions which could not be handled by available tools and methods. The Fučík spectrum and the $p$-Laplacian are typical examples in the field of nonlinear analysis. The systematic study of these notions during the last four decades led to several interesting and surprising results and revealed deep relationship between the linear and the nonlinear structures. This paper does not provide a complete survey. We focus on some pioneering works and present some contributions of the author. From this point of view the list of references is by no means exhaustive.},
author = {Drábek, Pavel},
journal = {Mathematica Bohemica},
keywords = {Fučík spectrum; $p$-Laplacian; Fučík spectrum; -Laplacian},
language = {eng},
number = {4},
pages = {699-711},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two notions which affected nonlinear analysis (Bernard Bolzano lecture)},
url = {http://eudml.org/doc/269858},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Drábek, Pavel
TI - Two notions which affected nonlinear analysis (Bernard Bolzano lecture)
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 699
EP - 711
AB - General mathematical theories usually originate from the investigation of particular problems and notions which could not be handled by available tools and methods. The Fučík spectrum and the $p$-Laplacian are typical examples in the field of nonlinear analysis. The systematic study of these notions during the last four decades led to several interesting and surprising results and revealed deep relationship between the linear and the nonlinear structures. This paper does not provide a complete survey. We focus on some pioneering works and present some contributions of the author. From this point of view the list of references is by no means exhaustive.
LA - eng
KW - Fučík spectrum; $p$-Laplacian; Fučík spectrum; -Laplacian
UR - http://eudml.org/doc/269858
ER -
References
top- Anane, A., Simplicity and isolation of first eigenvalue of the -Laplacian with weight, C. R. Acad. Sci., Paris, Sér. I 305 French (1987), 725-728. (1987) Zbl0633.35061MR0920052
- Anane, A., Tsouli, N., On the second eigenvalue of the -Laplacian, Nonlinear Partial Differential Equations. Based on the International Conference on Nonlinear Analysis, Fés, Morocco, 1994 Pitman Res. Notes Math. Ser. 343 Longman, Harlow (1996), 1-9 A. Benkirane et al. (1996) Zbl0854.35081MR1417265
- Berkovits, J., Drábek, P., Leinfelder, H., Mustonen, V., Tajčová, G., Time-periodic oscillations in suspension bridges: Existence of unique solutions, Nonlinear Anal., Real World Appl. 1 (2000), 345-362. (2000) Zbl0989.74031MR1791531
- Binding, P. A., Drábek, P., Huang, Y. X., 10.1090/S0002-9939-97-03992-0, Proc. Am. Math. Soc. 125 (1997), 3555-3559. (1997) Zbl0882.35049MR1416077DOI10.1090/S0002-9939-97-03992-0
- Boccardo, L., Drábek, P., Giachetti, D., Kučera, M., 10.1016/0362-546X(86)90091-X, Nonlinear Anal., Theory Methods Appl. 10 (1986), 1083-1103. (1986) Zbl0623.34031MR0857742DOI10.1016/0362-546X(86)90091-X
- Dancer, E. N., 10.1017/S0004972700022747, Bull. Aust. Math. Soc. 15 (1976), 321-328. (1976) Zbl0342.34007MR0430384DOI10.1017/S0004972700022747
- Pino, M. del, Drábek, P., Manásevich, R., 10.1006/jdeq.1998.3506, J. Differ. Equations 151 (1999), 386-419. (1999) MR1669705DOI10.1006/jdeq.1998.3506
- Pino, M. A. del, Manásevich, R. F., 10.1016/0022-0396(91)90048-E, J. Differ. Equations 92 (1991), 226-251. (1991) MR1120904DOI10.1016/0022-0396(91)90048-E
- Drábek, P., Geometry of the energy functional and the Fredholm alternative for the -Laplacian in higher dimensions, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. (electronic only) 8 (2002), 103-120. (2002) Zbl1114.35318MR1990298
- Drábek, P., Solvability and Bifurcations of Nonlinear Equations, Pitman Research Notes in Mathematics Series 264 Longman Scientific, Harlow; John Wiley, New York (1992). (1992) Zbl0753.34002MR1175397
- Drábek, P., On the global bifurcation for a class of degenerate equations, Ann. Mat. Pura Appl. (4) 159 (1991), 1-16. (1991) Zbl0814.34018MR1145086
- Drábek, P., 10.1016/0022-247X(87)90121-1, J. Math. Anal. Appl. 127 (1987), 435-442. (1987) Zbl0642.34009MR0915069DOI10.1016/0022-247X(87)90121-1
- Drábek, P., Ranges of homogeneous operators and their perturbations, Čas. Pěst. Mat. 105 (1980), 167-183. (1980) Zbl0427.47048MR0573109
- Drábek, P., Girg, P., Takáč, P., Ulm, M., 10.1512/iumj.2004.53.2396, Indiana Univ. Math. J. 53 (2004), 433-482. (2004) Zbl1081.35031MR2060041DOI10.1512/iumj.2004.53.2396
- Drábek, P., Holubová, G., 10.12775/TMNA.1999.021, Topol. Methods Nonlinear Anal. 14 (1999), 39-58. (1999) Zbl0967.35013MR1758879DOI10.12775/TMNA.1999.021
- Drábek, P., Holubová, G., Matas, A., Nečesal, P., 10.1023/B:APOM.0000024489.96314.7f, Appl. Math., Praha 48 (2003), 497-514. (2003) MR2025959DOI10.1023/B:APOM.0000024489.96314.7f
- Drábek, P., Kufner, A., 10.1090/S0002-9939-05-07958-X, Proc. Am. Math. Soc. 134 (2006), 235-242. (2006) Zbl1090.34066MR2170563DOI10.1090/S0002-9939-05-07958-X
- Drábek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, De Gruyter Series in Nonlinear Analysis and Applications 5 Walter de Gruyter, Berlin (1997). (1997) Zbl0894.35002MR1460729
- Drábek, P., Kuliev, K., 10.36045/bbms/1331153412, Bull. Belg. Math. Soc. -- Simon Stevin 19 (2012), 107-119. (2012) Zbl1252.34034MR2952799DOI10.36045/bbms/1331153412
- Drábek, P., Robinson, S. B., 10.1016/j.jmaa.2014.04.019, J. Math. Anal. Appl. 418 (2014), 884-905. (2014) MR3206687DOI10.1016/j.jmaa.2014.04.019
- Drábek, P., Robinson, S. B., On the Fredholm alternative for the Fučík spectrum, Abstr. Appl. Anal. 2010 (2010), Article ID 125464, 20 pages. (2010) Zbl1214.47011MR2754193
- Drábek, P., Robinson, S. B., 10.1006/jdeq.2001.4070, J. Differ. Equations 181 (2002), 58-71. (2002) Zbl1163.35449MR1900460DOI10.1006/jdeq.2001.4070
- Drábek, P., Robinson, S. B., 10.1006/jfan.1999.3501, J. Funct. Anal. 169 (1999), Article No. jfan.1999.3501, 189-200. (1999) Zbl0940.35087MR1726752DOI10.1006/jfan.1999.3501
- Elbert, A., A half-linear second order differential equation, Qualitative Theory of Differential Equations, Vol. I, Szeged, 1979 Colloq. Math. Soc. János Bolyai 30 North-Holland, Amsterdam (1981), 153-180 M. Farkas. (1981) Zbl0511.34006MR0680591
- Fučík, S., Solvability of Nonlinear Equations and Boundary Value Problems, Mathematics and Its Applications 4 D. Reidel Publishing, Dordrecht (1980). (1980) MR0620638
- Fučík, S., Boundary value problems with jumping nonlinearities, Čas. Pěst. Mat. 101 (1976), 69-87. (1976) Zbl0332.34016MR0447688
- Fučík, S., Nečas, J., Souček, J., Souček, V., 10.1007/BFb0059360, Lecture Notes in Mathematics 346 Springer, Berlin (1973). (1973) Zbl0268.47056MR0467421DOI10.1007/BFb0059360
- Kováčik, O., Rákosník, J., On spaces and , Czech. Math. J. 41 (1991), 592-618. (1991) MR1134951
- Krejčí, P., On solvability of equations of the 4th order with jumping nonlinearities, Čas. Pěst. Mat. 108 (1983), 29-39. (1983) Zbl0515.35013MR0694138
- Landesman, E. M., Lazer, A. C., Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. (1970) Zbl0193.39203MR0267269
- Lazer, A. C., McKenna, P. J., 10.1137/1032120, SIAM Rev. 32 (1990), 537-578. (1990) Zbl0725.73057MR1084570DOI10.1137/1032120
- Růžička, M., 10.1007/BFb0104030, Lecture Notes in Mathematics 1748 Springer, Berlin (2000). (2000) Zbl0968.76531MR1810360DOI10.1007/BFb0104030
- Švarc, R., The solution of a Fučík's conjecture, Commentat. Math. Univ. Carol. 25 (1984), 483-517. (1984) Zbl0562.47049MR0775566
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.