Recent progress in attractors for quintic wave equations
Anton Savostianov; Sergey Zelik
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 657-665
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSavostianov, Anton, and Zelik, Sergey. "Recent progress in attractors for quintic wave equations." Mathematica Bohemica 139.4 (2014): 657-665. <http://eudml.org/doc/269859>.
@article{Savostianov2014,
abstract = {We report on new results concerning the global well-posedness, dissipativity and attractors for the quintic wave equations in bounded domains of $\mathbb \{R\}^3$ with damping terms of the form $(-\Delta _x)^\theta \partial _t u$, where $\theta =0$ or $\theta =1/2$. The main ingredient of the work is the hidden extra regularity of solutions that does not follow from energy estimates. Due to the extra regularity of solutions existence of a smooth attractor then follows from the smoothing property when $\theta =1/2$. For $\theta =0$ existence of smooth attractors is more complicated and follows from Strichartz type estimates.},
author = {Savostianov, Anton, Zelik, Sergey},
journal = {Mathematica Bohemica},
keywords = {damped wave equation; fractional damping; critical nonlinearity; global attractor; smoothness; damped wave equation; fractional damping; critical nonlinearity; global attractor; smoothness},
language = {eng},
number = {4},
pages = {657-665},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Recent progress in attractors for quintic wave equations},
url = {http://eudml.org/doc/269859},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Savostianov, Anton
AU - Zelik, Sergey
TI - Recent progress in attractors for quintic wave equations
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 657
EP - 665
AB - We report on new results concerning the global well-posedness, dissipativity and attractors for the quintic wave equations in bounded domains of $\mathbb {R}^3$ with damping terms of the form $(-\Delta _x)^\theta \partial _t u$, where $\theta =0$ or $\theta =1/2$. The main ingredient of the work is the hidden extra regularity of solutions that does not follow from energy estimates. Due to the extra regularity of solutions existence of a smooth attractor then follows from the smoothing property when $\theta =1/2$. For $\theta =0$ existence of smooth attractors is more complicated and follows from Strichartz type estimates.
LA - eng
KW - damped wave equation; fractional damping; critical nonlinearity; global attractor; smoothness; damped wave equation; fractional damping; critical nonlinearity; global attractor; smoothness
UR - http://eudml.org/doc/269859
ER -
References
top- Babin, A. V., Vishik, M. I., Attractors of Evolution Equations, Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992), translated and revised from the 1989 Russian original. (1992) Zbl0778.58002MR1156492
- Ball, J. M., Global attractors for damped semilinear wave equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst. 10 (2004), 31-52. (2004) MR2026182
- Blair, M. D., Smith, H. F., Sogge, C. D., 10.1016/j.anihpc.2008.12.004, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009), 1817-1829. (2009) Zbl1198.58012MR2566711DOI10.1016/j.anihpc.2008.12.004
- Burq, N., Lebeau, G., Planchon, F., 10.1090/S0894-0347-08-00596-1, J. Am. Math. Soc. 21 (2008), 831-845. (2008) Zbl1204.35119MR2393429DOI10.1090/S0894-0347-08-00596-1
- Carvalho, A. N., Cholewa, J. W., 10.2140/pjm.2002.207.287, Pac. J. Math. 207 (2002), 287-310. (2002) Zbl1060.35082MR1972247DOI10.2140/pjm.2002.207.287
- Carvalho, A. N., Cholewa, J. W., 10.1017/S0004972700040296, Bull. Aust. Math. Soc. 66 (2002), 443-463. (2002) Zbl1020.35059MR1939206DOI10.1017/S0004972700040296
- Carvalho, A. N., Cholewa, J. W., Dlotko, T., 10.1016/j.jde.2008.02.011, J. Differ. Equations 244 (2008), 2310-2333. (2008) Zbl1151.35056MR2413843DOI10.1016/j.jde.2008.02.011
- Chen, S., Triggiani, R., Gevrey class semigroups arising from elastic systems with gentle dissipation: The case , Proc. Am. Math. Soc. 110 (1990), 401-415. (1990) MR1021208
- Chen, S., Triggiani, R., 10.2140/pjm.1989.136.15, Pac. J. Math. 136 (1989), 15-55. (1989) Zbl0633.47025MR0971932DOI10.2140/pjm.1989.136.15
- Chepyzhov, V. V., Vishik, M. I., Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications 49 American Mathematical Society, Providence (2002). (2002) Zbl0986.35001MR1868930
- Chueshov, I., Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl. (electronic only) 1 (2010), 86-106. (2010) Zbl1216.37026MR2771816
- Chueshov, I., Lasiecka, I., Von Karman Evolution Equations. Well-posedness and long time dynamics, Springer Monographs in Mathematics Springer, New York (2010). (2010) Zbl1298.35001MR2643040
- Feireisl, E., 10.1017/S0308210500022630, Proc. R. Soc. Edinb., Sect. A, Math. 125 (1995), 1051-1062. (1995) Zbl0838.35078MR1361632DOI10.1017/S0308210500022630
- Grasselli, M., Schimperna, G., Segatti, A., Zelik, S., 10.1007/s00028-009-0017-7, J. Evol. Equ. 9 (2009), 371-404. (2009) Zbl1239.35160MR2511557DOI10.1007/s00028-009-0017-7
- Grasselli, M., Schimperna, G., Zelik, S., 10.1080/03605300802608247, Commun. Partial Differ. Equations 34 (2009), 137-170. (2009) Zbl1173.35086MR2512857DOI10.1080/03605300802608247
- Grillakis, M. G., Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. Math. (2) 132 (1990), 485-509. (1990) Zbl0736.35067MR1078267
- Kalantarov, V., Savostianov, A., Zelik, S., Attractors for damped quintic wave equations in bounded domains, http://arxiv.org/abs/1309.6272.
- Kalantarov, V., Zelik, S., 10.1016/j.jde.2009.04.010, J. Differ. Equations 247 (2009), 1120-1155. (2009) Zbl1183.35053MR2531174DOI10.1016/j.jde.2009.04.010
- Kapitanski, L., 10.1080/03605309508821133, Commun. Partial Differ. Equations 20 (1995), 1303-1323. (1995) Zbl0829.35014MR1335752DOI10.1080/03605309508821133
- Kapitanski, L., 10.4310/MRL.1994.v1.n2.a9, Math. Res. Lett. 1 (1994), 211-223. (1994) Zbl0841.35067MR1266760DOI10.4310/MRL.1994.v1.n2.a9
- Miranville, A., Zelik, S., Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations IV Elsevier/North-Holland, Amsterdam (2008), 103-200 C. M. Dafermos et al. (2008) Zbl1221.37158MR2508165
- Moise, I., Rosa, R., Wang, X., 10.1088/0951-7715/11/5/012, Nonlinearity 11 (1998), 1369-1393. (1998) Zbl0914.35023MR1644413DOI10.1088/0951-7715/11/5/012
- Pata, V., Zelik, S., 10.3934/cpaa.2006.5.611, Commun. Pure Appl. Anal. 5 (2006), 611-616. (2006) Zbl1140.35533MR2217604DOI10.3934/cpaa.2006.5.611
- Pata, V., Zelik, S., 10.1088/0951-7715/19/7/001, Nonlinearity 19 (2006), 1495-1506. (2006) Zbl1113.35023MR2229785DOI10.1088/0951-7715/19/7/001
- Savostianov, A., Zelik, S., 10.3233/ASY-131208, Asymptotic Anal. 87 (2014), 191-221. (2014) MR3195728DOI10.3233/ASY-131208
- Shatah, J., Struwe, M., Regularity results for nonlinear wave equations, Ann. Math. (2) 138 (1993), 503-518. (1993) Zbl0836.35096MR1247991
- Zelik, S., 10.3934/dcds.2004.11.351, Discrete Contin. Dyn. Syst. 11 (2004), 351-392. (2004) Zbl1059.35018MR2083423DOI10.3934/dcds.2004.11.351
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.