Strichartz estimates for the wave equation on manifolds with boundary

Matthew D. Blair; Hart F. Smith; Christopher D. Sogge

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 5, page 1817-1829
  • ISSN: 0294-1449

How to cite

top

Blair, Matthew D., Smith, Hart F., and Sogge, Christopher D.. "Strichartz estimates for the wave equation on manifolds with boundary." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1817-1829. <http://eudml.org/doc/78914>.

@article{Blair2009,
author = {Blair, Matthew D., Smith, Hart F., Sogge, Christopher D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Strichartz estimates; nonlinear wave equations; scattering; subcritical case; critical case},
language = {eng},
number = {5},
pages = {1817-1829},
publisher = {Elsevier},
title = {Strichartz estimates for the wave equation on manifolds with boundary},
url = {http://eudml.org/doc/78914},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Blair, Matthew D.
AU - Smith, Hart F.
AU - Sogge, Christopher D.
TI - Strichartz estimates for the wave equation on manifolds with boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1817
EP - 1829
LA - eng
KW - Strichartz estimates; nonlinear wave equations; scattering; subcritical case; critical case
UR - http://eudml.org/doc/78914
ER -

References

top
  1. [1] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math.121 (1999) 131-175. Zbl0919.35089MR1705001
  2. [2] Bahouri H., Shatah J., Decay estimates for the critical wave equation, Ann. Inst. H. Poincaré Anal. Non Lineáire15 (6) (1998) 783-789. Zbl0924.35084MR1650958
  3. [3] Bchatnia A., Daoulatli M., Scattering and exponential decay of the local energy for the solutions of semilinear and subcritical wave equation outside convex obstacle, Math. Z.247 (2004) 619-642. Zbl1063.35033MR2114432
  4. [4] Burq N., Global Strichartz estimates for nontrapping geometries: about an article by H. Smith and C. Sogge, Comm. Partial Differential Equations28 (2003) 1675-1683. Zbl1026.35020MR2001179
  5. [5] Burq N., Lebeau G., Planchon F., Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc.21 (2008) 831-845. Zbl1184.35210MR2393429
  6. [6] N. Burq, F. Planchon, Global existence for energy critical waves in 3-d domains: Neumann boundary conditions, Amer. J. Math., in press. Zbl1184.35210MR2567505
  7. [7] Christ M., Kiselev A., Maximal functions asociated to filtrations, J. Funct. Anal.179 (2001) 409-425. Zbl0974.47025MR1809116
  8. [8] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
  9. [9] Grillakis M.G., Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math.45 (1992) 749-774. Zbl0785.35065MR1162370
  10. [10] Hidano K., Metcalfe J., Smith H.F., Sogge C.D., Zhou Y., On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, arXiv:0805.1673. Zbl1193.35100MR2584618
  11. [11] Ivanovici O., Counter examples to Strichartz estimates for the wave equation in domains, arXiv:0805.2901. Zbl1201.35060
  12. [12] Kapitanski L.V., Norm estimates in Besov and Lizorkin–Treibel spaces for the solutions of second order linear hyperbolic equations, J. Soviet Math.56 (1991) 2348-2389. Zbl0759.35014MR1031987
  13. [13] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) 955-980. Zbl0922.35028MR1646048
  14. [14] Koch H., Tataru D., Dispersive estimates for principally normal operators, Comm. Pure Appl. Math.58 (2005) 217-284. Zbl1078.35143MR2094851
  15. [15] Lindblad H., Sogge C.D., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (1995) 357-426. Zbl0846.35085MR1335386
  16. [16] Metcalfe J., Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle, Trans. Amer. Math. Soc.356 (2004) 4839-4855. Zbl1060.35026MR2084401
  17. [17] Mockenhaupt G., Seeger A., Sogge C.D., Local smoothing of Fourier integral operators and Carleson–Sjölin estimates, J. Amer. Math. Soc.6 (1993) 65-130. Zbl0776.58037MR1168960
  18. [18] Morawetz C., Time decay for the nonlinear Klein–Gordon equation, Proc. Roy. Soc. A.306 (1968) 291-296. Zbl0157.41502MR234136
  19. [19] Shatah J., Struwe M., Regularity for the wave equation with a critical nonlinearity, Internat. Math. Res. Notices7 (1994) 303-310. Zbl0830.35086MR1283026
  20. [20] Smith H.F., A parametrix construction for wave equations with C 1 , 1 coefficients, Ann. Inst. Fourier (Grenoble)48 (1998) 797-835. Zbl0974.35068MR1644105
  21. [21] Smith H.F., Spectral cluster estimates for C 1 , 1 estimates, Amer. J. Math.128 (2006) 1069-1103. Zbl1284.35149MR2262171
  22. [22] Smith H.F., Sogge C.D., On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc.8 (1995) 879-916. Zbl0860.35081MR1308407
  23. [23] Smith H.F., Sogge C.D., Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations25 (2000) 2171-2183. Zbl0972.35014MR1789924
  24. [24] Smith H.F., Sogge C.D., On the L p norm of spectral clusters for compact manifolds with boundary, Acta Math.198 (2007) 107-153. Zbl1189.58017MR2316270
  25. [25] Sogge C., Lectures on Nonlinear Wave Equations, International Press, Boston, MA, 1995. Zbl1089.35500MR1715192
  26. [26] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
  27. [27] Tao T., Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, Providence, RI, 2006. Zbl1106.35001MR2233925
  28. [28] Tataru D., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III, J. Amer. Math. Soc.15 (2002) 419-442. Zbl0990.35027MR1887639
  29. [29] Tataru D., Phase space transforms and microlocal analysis, in: Phase Space Analysis of Partial Differential Equations, vol. II, Pubbl. Cent. Ric. Mat. Ennio Georgi, Scuola Norm. Sup., Pisa, 2004, pp. 505-524. Zbl1111.35143MR2208883

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.