Strichartz estimates for the wave equation on manifolds with boundary
Matthew D. Blair; Hart F. Smith; Christopher D. Sogge
Annales de l'I.H.P. Analyse non linéaire (2009)
- Volume: 26, Issue: 5, page 1817-1829
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBlair, Matthew D., Smith, Hart F., and Sogge, Christopher D.. "Strichartz estimates for the wave equation on manifolds with boundary." Annales de l'I.H.P. Analyse non linéaire 26.5 (2009): 1817-1829. <http://eudml.org/doc/78914>.
@article{Blair2009,
author = {Blair, Matthew D., Smith, Hart F., Sogge, Christopher D.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Strichartz estimates; nonlinear wave equations; scattering; subcritical case; critical case},
language = {eng},
number = {5},
pages = {1817-1829},
publisher = {Elsevier},
title = {Strichartz estimates for the wave equation on manifolds with boundary},
url = {http://eudml.org/doc/78914},
volume = {26},
year = {2009},
}
TY - JOUR
AU - Blair, Matthew D.
AU - Smith, Hart F.
AU - Sogge, Christopher D.
TI - Strichartz estimates for the wave equation on manifolds with boundary
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 5
SP - 1817
EP - 1829
LA - eng
KW - Strichartz estimates; nonlinear wave equations; scattering; subcritical case; critical case
UR - http://eudml.org/doc/78914
ER -
References
top- [1] Bahouri H., Gérard P., High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math.121 (1999) 131-175. Zbl0919.35089MR1705001
- [2] Bahouri H., Shatah J., Decay estimates for the critical wave equation, Ann. Inst. H. Poincaré Anal. Non Lineáire15 (6) (1998) 783-789. Zbl0924.35084MR1650958
- [3] Bchatnia A., Daoulatli M., Scattering and exponential decay of the local energy for the solutions of semilinear and subcritical wave equation outside convex obstacle, Math. Z.247 (2004) 619-642. Zbl1063.35033MR2114432
- [4] Burq N., Global Strichartz estimates for nontrapping geometries: about an article by H. Smith and C. Sogge, Comm. Partial Differential Equations28 (2003) 1675-1683. Zbl1026.35020MR2001179
- [5] Burq N., Lebeau G., Planchon F., Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc.21 (2008) 831-845. Zbl1184.35210MR2393429
- [6] N. Burq, F. Planchon, Global existence for energy critical waves in 3-d domains: Neumann boundary conditions, Amer. J. Math., in press. Zbl1184.35210MR2567505
- [7] Christ M., Kiselev A., Maximal functions asociated to filtrations, J. Funct. Anal.179 (2001) 409-425. Zbl0974.47025MR1809116
- [8] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
- [9] Grillakis M.G., Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math.45 (1992) 749-774. Zbl0785.35065MR1162370
- [10] Hidano K., Metcalfe J., Smith H.F., Sogge C.D., Zhou Y., On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles, arXiv:0805.1673. Zbl1193.35100MR2584618
- [11] Ivanovici O., Counter examples to Strichartz estimates for the wave equation in domains, arXiv:0805.2901. Zbl1201.35060
- [12] Kapitanski L.V., Norm estimates in Besov and Lizorkin–Treibel spaces for the solutions of second order linear hyperbolic equations, J. Soviet Math.56 (1991) 2348-2389. Zbl0759.35014MR1031987
- [13] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) 955-980. Zbl0922.35028MR1646048
- [14] Koch H., Tataru D., Dispersive estimates for principally normal operators, Comm. Pure Appl. Math.58 (2005) 217-284. Zbl1078.35143MR2094851
- [15] Lindblad H., Sogge C.D., On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal.130 (1995) 357-426. Zbl0846.35085MR1335386
- [16] Metcalfe J., Global Strichartz estimates for solutions to the wave equation exterior to a convex obstacle, Trans. Amer. Math. Soc.356 (2004) 4839-4855. Zbl1060.35026MR2084401
- [17] Mockenhaupt G., Seeger A., Sogge C.D., Local smoothing of Fourier integral operators and Carleson–Sjölin estimates, J. Amer. Math. Soc.6 (1993) 65-130. Zbl0776.58037MR1168960
- [18] Morawetz C., Time decay for the nonlinear Klein–Gordon equation, Proc. Roy. Soc. A.306 (1968) 291-296. Zbl0157.41502MR234136
- [19] Shatah J., Struwe M., Regularity for the wave equation with a critical nonlinearity, Internat. Math. Res. Notices7 (1994) 303-310. Zbl0830.35086MR1283026
- [20] Smith H.F., A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble)48 (1998) 797-835. Zbl0974.35068MR1644105
- [21] Smith H.F., Spectral cluster estimates for estimates, Amer. J. Math.128 (2006) 1069-1103. Zbl1284.35149MR2262171
- [22] Smith H.F., Sogge C.D., On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc.8 (1995) 879-916. Zbl0860.35081MR1308407
- [23] Smith H.F., Sogge C.D., Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial Differential Equations25 (2000) 2171-2183. Zbl0972.35014MR1789924
- [24] Smith H.F., Sogge C.D., On the norm of spectral clusters for compact manifolds with boundary, Acta Math.198 (2007) 107-153. Zbl1189.58017MR2316270
- [25] Sogge C., Lectures on Nonlinear Wave Equations, International Press, Boston, MA, 1995. Zbl1089.35500MR1715192
- [26] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation, Duke Math. J.44 (1977) 705-714. Zbl0372.35001MR512086
- [27] Tao T., Nonlinear Dispersive Equations: Local and Global Analysis, American Mathematical Society, Providence, RI, 2006. Zbl1106.35001MR2233925
- [28] Tataru D., Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients III, J. Amer. Math. Soc.15 (2002) 419-442. Zbl0990.35027MR1887639
- [29] Tataru D., Phase space transforms and microlocal analysis, in: Phase Space Analysis of Partial Differential Equations, vol. II, Pubbl. Cent. Ric. Mat. Ennio Georgi, Scuola Norm. Sup., Pisa, 2004, pp. 505-524. Zbl1111.35143MR2208883
Citations in EuDML Documents
top- Anton Savostianov, Sergey Zelik, Recent progress in attractors for quintic wave equations
- Oana Ivanovici, Dispersive and Strichartz estimates for the wave equation in domains with boundary
- Oana Ivanovici, Gilles Lebeau, Fabrice Planchon, Estimations de Strichartz pour les ondes dans le modèle de Friedlander en dimension
- Nicolas Burq, Gilles Lebeau, Injections de Sobolev probabilistes et applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.