Some necessary and sufficient conditions for nilpotent n -Lie superalgebras

Baoling Guan; Liangyun Chen; Yao Ma

Czechoslovak Mathematical Journal (2014)

  • Volume: 64, Issue: 4, page 1019-1034
  • ISSN: 0011-4642

Abstract

top
The paper studies nilpotent n -Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for n -Lie superalgebras which is a generalization of those for n -Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent n -Lie superalgebras and obtain several sufficient conditions for an n -Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.

How to cite

top

Guan, Baoling, Chen, Liangyun, and Ma, Yao. "Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras." Czechoslovak Mathematical Journal 64.4 (2014): 1019-1034. <http://eudml.org/doc/269864>.

@article{Guan2014,
abstract = {The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.},
author = {Guan, Baoling, Chen, Liangyun, Ma, Yao},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent $n$-Lie superalgebra; Engel’s theorem; $S^\{\ast \}$ algebra; Frattini subalgebra; nilpotent $n$-Lie superalgebra; Engel theorem; Frattini subalgebra},
language = {eng},
number = {4},
pages = {1019-1034},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras},
url = {http://eudml.org/doc/269864},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Guan, Baoling
AU - Chen, Liangyun
AU - Ma, Yao
TI - Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1019
EP - 1034
AB - The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
LA - eng
KW - nilpotent $n$-Lie superalgebra; Engel’s theorem; $S^{\ast }$ algebra; Frattini subalgebra; nilpotent $n$-Lie superalgebra; Engel theorem; Frattini subalgebra
UR - http://eudml.org/doc/269864
ER -

References

top
  1. Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M., 10.1080/00927870802319406, Commun. Algebra 37 (2009), 2080-2096. (2009) Zbl1236.17004MR2530764DOI10.1080/00927870802319406
  2. Bai, R. P., Chen, L. Y., Meng, D. J., 10.1007/s10114-005-0923-8, Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. (2007) Zbl1152.17004MR2307826DOI10.1007/s10114-005-0923-8
  3. Barnes, D. W., 10.1080/00927872.2010.489529, Commun. Algebra 39 (2011), 2463-2472. (2011) Zbl1268.17001MR2821724DOI10.1080/00927872.2010.489529
  4. Barnes, D. W., 10.1007/s10114-007-1008-7, Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. (2008) Zbl1176.17002MR2384240DOI10.1007/s10114-007-1008-7
  5. Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A., 10.1142/S0219498812500624, J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. (2012) Zbl1302.17003MR2928129DOI10.1142/S0219498812500624
  6. Cantarini, N., Kac, V. G., 10.1007/s00220-010-1049-0, Commun. Math. Phys. 298 (2010), 833-853. (2010) Zbl1232.17008MR2670929DOI10.1007/s00220-010-1049-0
  7. Casas, J. M., Khmaladze, E., Ladra, M., 10.1080/00927870600636423, Commun. Algebra 34 (2006), 2769-2780. (2006) Zbl1127.17003MR2250568DOI10.1080/00927870600636423
  8. Chao, C.-Y., 10.1007/BF01111285, Math. Z. 103 (1968), 40-42. (1968) Zbl0178.03603MR0223415DOI10.1007/BF01111285
  9. Chao, C. Y., Stitzinger, E. L., 10.1007/BF01224667, Arch. Math. 27 (1976), 249-252. (1976) Zbl0334.17004MR0409580DOI10.1007/BF01224667
  10. Chen, L., Meng, D., On the intersection of maximal subalgebras in a Lie superalgebra, Algebra Colloq. 16 (2009), 503-516. (2009) Zbl1235.17009MR2536774
  11. Daletskiĭ, Y. L., Kushnirevich, V. A., Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry, Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. (1996) MR1417608
  12. Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M., 10.1080/03081087.2012.758260, Linear Multilinear Algebra 61 (2013), 1510-1527. (2013) MR3175382DOI10.1080/03081087.2012.758260
  13. Kasymov, S. M., 10.1007/BF02009328, Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). (1987) MR0962883DOI10.1007/BF02009328
  14. Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L., 10.1080/00927872.2012.717655, Commun. Algebra 42 (2014), 2404-2410. (2014) MR3169714DOI10.1080/00927872.2012.717655
  15. Williams, M. P., 10.1080/00927870802108007, Commun. Algebra 37 (2009), 1843-1849. (2009) Zbl1250.17003MR2530747DOI10.1080/00927870802108007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.