Some necessary and sufficient conditions for nilpotent -Lie superalgebras
Baoling Guan; Liangyun Chen; Yao Ma
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 4, page 1019-1034
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuan, Baoling, Chen, Liangyun, and Ma, Yao. "Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras." Czechoslovak Mathematical Journal 64.4 (2014): 1019-1034. <http://eudml.org/doc/269864>.
@article{Guan2014,
abstract = {The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.},
author = {Guan, Baoling, Chen, Liangyun, Ma, Yao},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent $n$-Lie superalgebra; Engel’s theorem; $S^\{\ast \}$ algebra; Frattini subalgebra; nilpotent $n$-Lie superalgebra; Engel theorem; Frattini subalgebra},
language = {eng},
number = {4},
pages = {1019-1034},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras},
url = {http://eudml.org/doc/269864},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Guan, Baoling
AU - Chen, Liangyun
AU - Ma, Yao
TI - Some necessary and sufficient conditions for nilpotent $n$-Lie superalgebras
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 4
SP - 1019
EP - 1034
AB - The paper studies nilpotent $n$-Lie superalgebras over a field of characteristic zero. More specifically speaking, we prove Engel’s theorem for $n$-Lie superalgebras which is a generalization of those for $n$-Lie algebras and Lie superalgebras. In addition, as an application of Engel’s theorem, we give some properties of nilpotent $n$-Lie superalgebras and obtain several sufficient conditions for an $n$-Lie superalgebra to be nilpotent by using the notions of the maximal subalgebra, the weak ideal and the Jacobson radical.
LA - eng
KW - nilpotent $n$-Lie superalgebra; Engel’s theorem; $S^{\ast }$ algebra; Frattini subalgebra; nilpotent $n$-Lie superalgebra; Engel theorem; Frattini subalgebra
UR - http://eudml.org/doc/269864
ER -
References
top- Albeverio, S., Ayupov, S. A., Omirov, B. A., Turdibaev, R. M., 10.1080/00927870802319406, Commun. Algebra 37 (2009), 2080-2096. (2009) Zbl1236.17004MR2530764DOI10.1080/00927870802319406
- Bai, R. P., Chen, L. Y., Meng, D. J., 10.1007/s10114-005-0923-8, Acta Math. Sin., Engl. Ser. 23 (2007), 847-856. (2007) Zbl1152.17004MR2307826DOI10.1007/s10114-005-0923-8
- Barnes, D. W., 10.1080/00927872.2010.489529, Commun. Algebra 39 (2011), 2463-2472. (2011) Zbl1268.17001MR2821724DOI10.1080/00927872.2010.489529
- Barnes, D. W., 10.1007/s10114-007-1008-7, Acta Math. Sin., Engl. Ser. 24 (2008), 159-166. (2008) Zbl1176.17002MR2384240DOI10.1007/s10114-007-1008-7
- Camacho, L. M., Casas, J. M., Gómez, J. R., Ladra, M., Omirov, B. A., 10.1142/S0219498812500624, J. Algebra Appl. 11 (2012), Article ID 1250062, 17 pages. (2012) Zbl1302.17003MR2928129DOI10.1142/S0219498812500624
- Cantarini, N., Kac, V. G., 10.1007/s00220-010-1049-0, Commun. Math. Phys. 298 (2010), 833-853. (2010) Zbl1232.17008MR2670929DOI10.1007/s00220-010-1049-0
- Casas, J. M., Khmaladze, E., Ladra, M., 10.1080/00927870600636423, Commun. Algebra 34 (2006), 2769-2780. (2006) Zbl1127.17003MR2250568DOI10.1080/00927870600636423
- Chao, C.-Y., 10.1007/BF01111285, Math. Z. 103 (1968), 40-42. (1968) Zbl0178.03603MR0223415DOI10.1007/BF01111285
- Chao, C. Y., Stitzinger, E. L., 10.1007/BF01224667, Arch. Math. 27 (1976), 249-252. (1976) Zbl0334.17004MR0409580DOI10.1007/BF01224667
- Chen, L., Meng, D., On the intersection of maximal subalgebras in a Lie superalgebra, Algebra Colloq. 16 (2009), 503-516. (2009) Zbl1235.17009MR2536774
- Daletskiĭ, Y. L., Kushnirevich, V. A., Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry, Dopov. Akad. Nauk Ukr. 1996 Russian (1996), 12-17. (1996) MR1417608
- Gago, F., Ladra, M., Omirov, B. A., Turdibaev, R. M., 10.1080/03081087.2012.758260, Linear Multilinear Algebra 61 (2013), 1510-1527. (2013) MR3175382DOI10.1080/03081087.2012.758260
- Kasymov, S. M., 10.1007/BF02009328, Algebra i Logika 26 (1987), Russian 277-297 English translation in Algebra and Logic 26 155-166 (1987). (1987) MR0962883DOI10.1007/BF02009328
- Ray, C. B., Combs, A., Gin, N., Hedges, A., Hird, J. T., Zack, L., 10.1080/00927872.2012.717655, Commun. Algebra 42 (2014), 2404-2410. (2014) MR3169714DOI10.1080/00927872.2012.717655
- Williams, M. P., 10.1080/00927870802108007, Commun. Algebra 37 (2009), 1843-1849. (2009) Zbl1250.17003MR2530747DOI10.1080/00927870802108007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.