Functional-differential equations with Riemann-Liouville integrals in the nonlinearities
Mathematica Bohemica (2014)
- Volume: 139, Issue: 4, page 587-595
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMedveď, Milan. "Functional-differential equations with Riemann-Liouville integrals in the nonlinearities." Mathematica Bohemica 139.4 (2014): 587-595. <http://eudml.org/doc/269866>.
@article{Medveď2014,
abstract = {A sufficient condition for the nonexistence of blowing-up solutions to evolution functional-differential equations in Banach spaces with the Riemann-Liouville integrals in their right-hand sides is proved. The linear part of such type of equations is an infinitesimal generator of a strongly continuous semigroup of linear bounded operators. The proof of the main result is based on a desingularization method applied by the author in his papers on integral inequalities with weakly singular kernels. The result is illustrated on an example of a scalar equation with one Riemann-Liouville integral.},
author = {Medveď, Milan},
journal = {Mathematica Bohemica},
keywords = {fractional differential equation; Riemann-Liouville integral; blowing-up solution; fractional differential equation; Riemann-Liouville integral; blowing-up solution},
language = {eng},
number = {4},
pages = {587-595},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Functional-differential equations with Riemann-Liouville integrals in the nonlinearities},
url = {http://eudml.org/doc/269866},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Medveď, Milan
TI - Functional-differential equations with Riemann-Liouville integrals in the nonlinearities
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 4
SP - 587
EP - 595
AB - A sufficient condition for the nonexistence of blowing-up solutions to evolution functional-differential equations in Banach spaces with the Riemann-Liouville integrals in their right-hand sides is proved. The linear part of such type of equations is an infinitesimal generator of a strongly continuous semigroup of linear bounded operators. The proof of the main result is based on a desingularization method applied by the author in his papers on integral inequalities with weakly singular kernels. The result is illustrated on an example of a scalar equation with one Riemann-Liouville integral.
LA - eng
KW - fractional differential equation; Riemann-Liouville integral; blowing-up solution; fractional differential equation; Riemann-Liouville integral; blowing-up solution
UR - http://eudml.org/doc/269866
ER -
References
top- Agarwal, R. P., O'Regan, D., Staněk, S., 10.1002/mana.201000043, Math. Nachr. 285 (2012), 27-41. (2012) Zbl1232.26005MR2864551DOI10.1002/mana.201000043
- Agarwal, R. P., O'Regan, D., Staněk, S., 10.1016/j.jmaa.2010.04.034, J. Math. Anal. Appl. 371 (2010), 57-68. (2010) Zbl1206.34009MR2660986DOI10.1016/j.jmaa.2010.04.034
- Constantin, A., Global solutions of perturbed differential equations, C. R. Acad. Sci., Paris, Sér. I Math. 320 French (1995), 1319-1322. (1995) Zbl0839.34002MR1338279
- Ezzinbi, K., Jazar, M., 10.1007/s11117-005-0026-x, Positivity 10 (2006), 329-341. (2006) Zbl1105.35134MR2237505DOI10.1007/s11117-005-0026-x
- Guo, Z., Liu, M., An integrodifferential equation with fractional derivatives in the nonlinearities, Acta Math. Univ. Comen., New Ser. 82 (2013), 105-111. (2013) MR3028152
- Kirane, M., Medveď, M., Tatar, N.-E., 10.1515/gmj-2012-0006, Georgian Math. J. 19 (2012), 127-144. (2012) Zbl1244.34099MR2901285DOI10.1515/gmj-2012-0006
- Kirane, M., Medveď, M., Tatar, N.-E., Semilinear Volterra integrodifferential problems with fractional derivatives in the nonlinearities, Abstr. Appl. Anal. 2011 (2011), Article ID 510314, 11 pages. (2011) Zbl1217.45001MR2800067
- Medveď, M., On the global existence of mild solutions of nonlinear delay systems associated with continuous and analytic semigroups, Electron. J. Qual. Theory Differ. Equ. (electronic only) 2008 (2008), Article No. 13, 10 pages, Proc. Colloq. Qual. Theory Differ. Equ. , 2007, University of Szeged, Bolyai Institute, Szeged, 2008. (2008) Zbl1218.47132MR2509172
- Medveď, M., Singular integral inequalities with several nonlinearities and integral equations with singular kernels, Nonlinear Oscil., N. Y. (electronic only) 11 (2008), 70-79 translated from NelīnīinīKolivannya 11 71-80 (2008). (2008) Zbl1275.45002MR2400018
- Medveď, M., 10.1006/jmaa.2001.7798, J. Math. Anal. Appl. 267 (2002), 643-650. (2002) Zbl1028.34055MR1888028DOI10.1006/jmaa.2001.7798
- Medveď, M., 10.1006/jmaa.1997.5532, J. Math. Anal. Appl. 214 (1997), Article ID ay975532, 349-366. (1997) Zbl0893.26006MR1475574DOI10.1006/jmaa.1997.5532
- Naber, M., Linear fractionally damped oscillator, Int. J. Differ. Equ. 2010 (2010), Article ID 197020, 12 pages. (2010) Zbl1207.34010MR2557328
- O'Regan, D., Staněk, S., 10.1007/s11071-012-0443-x, Nonlinear Dyn. 71 (2013), 641-652. (2013) Zbl1268.34023MR3030127DOI10.1007/s11071-012-0443-x
- Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44 Springer, New York (1983). (1983) Zbl0516.47023MR0710486
- Podlubny, I., Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering 198 Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Seredyńska, M., Hanyga, A., 10.1007/s00707-005-0220-8, Acta Mech. 176 (2005), 169-183. (2005) Zbl1069.70012DOI10.1007/s00707-005-0220-8
- Staněk, S., 10.2478/s11533-012-0141-4, Cent. Eur. J. Math. 11 (2013), 574-593. (2013) Zbl1262.34008MR3016324DOI10.2478/s11533-012-0141-4
- Tatar, N.-E., Mild solutions for a problem involving fractional derivatives in the nonlinearity and in the non-local conditions, Adv. Difference Equ. (electronic only) 2011 (2011), Article No. 18, 12 pages. (2011) Zbl1268.34029MR2820291
- Tatar, N.-E., 10.1016/j.camwa.2010.09.057, Comput. Math. Appl. 60 (2010), 2971-2982. (2010) Zbl1207.34099MR2737346DOI10.1016/j.camwa.2010.09.057
- Tatar, N.-E., 10.1016/j.na.2010.06.085, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 3130-3139. (2010) Zbl1197.26009MR2678671DOI10.1016/j.na.2010.06.085
- Torvik, P. J., Bagley, R. L., 10.1115/1.3167615, J. Appl. Mech. 51 (1984), 294-298. (1984) Zbl1203.74022DOI10.1115/1.3167615
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.