Connectedness of some rings of quotients of with the -topology
F. Azarpanah; M. Paimann; A. R. Salehi
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 1, page 63-76
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAzarpanah, F., Paimann, M., and Salehi, A. R.. "Connectedness of some rings of quotients of $C(X)$ with the $m$-topology." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 63-76. <http://eudml.org/doc/269891>.
@article{Azarpanah2015,
abstract = {In this article we define the $m$-topology on some rings of quotients of $C(X)$. Using this, we equip the classical ring of quotients $q(X)$ of $C(X)$ with the $m$-topology and we show that $C(X)$ with the $r$-topology is in fact a subspace of $q(X)$ with the $m$-topology. Characterization of the components of rings of quotients of $C(X)$ is given and using this, it turns out that $q(X)$ with the $m$-topology is connected if and only if $X$ is a pseudocompact almost $P$-space, if and only if $C(X)$ with $r$-topology is connected. We also observe that the maximal ring of quotients $Q(X)$ of $C(X)$ with the $m$-topology is connected if and only if $X$ is finite. Finally for each point $x$, we introduce a natural ring of quotients of $C(X)/O_x$ which is connected with the $m$-topology.},
author = {Azarpanah, F., Paimann, M., Salehi, A. R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$r$-topology; $m$-topology; almost $P$-space; pseudocompact space; component; classical ring of quotients of $C(X)$; -topology; -topology; almost -space; pseudocompact space; ring of quotients of $C(X)$},
language = {eng},
number = {1},
pages = {63-76},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Connectedness of some rings of quotients of $C(X)$ with the $m$-topology},
url = {http://eudml.org/doc/269891},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Azarpanah, F.
AU - Paimann, M.
AU - Salehi, A. R.
TI - Connectedness of some rings of quotients of $C(X)$ with the $m$-topology
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 63
EP - 76
AB - In this article we define the $m$-topology on some rings of quotients of $C(X)$. Using this, we equip the classical ring of quotients $q(X)$ of $C(X)$ with the $m$-topology and we show that $C(X)$ with the $r$-topology is in fact a subspace of $q(X)$ with the $m$-topology. Characterization of the components of rings of quotients of $C(X)$ is given and using this, it turns out that $q(X)$ with the $m$-topology is connected if and only if $X$ is a pseudocompact almost $P$-space, if and only if $C(X)$ with $r$-topology is connected. We also observe that the maximal ring of quotients $Q(X)$ of $C(X)$ with the $m$-topology is connected if and only if $X$ is finite. Finally for each point $x$, we introduce a natural ring of quotients of $C(X)/O_x$ which is connected with the $m$-topology.
LA - eng
KW - $r$-topology; $m$-topology; almost $P$-space; pseudocompact space; component; classical ring of quotients of $C(X)$; -topology; -topology; almost -space; pseudocompact space; ring of quotients of $C(X)$
UR - http://eudml.org/doc/269891
ER -
References
top- Azarpanah F., Manshoor F., Mohamadian R., 10.1016/j.topol.2012.08.010, Topology Appl. 159 (2012), 3486–3493. Zbl1255.54009MR2964861DOI10.1016/j.topol.2012.08.010
- Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Die Grundelehren der Math. Wissenschaften, 211, Springer, New York-Heidelberg-Berlin, 1974. Zbl0298.02004MR0396267
- Dashiell F., Hager A., Henriksen M., 10.4153/CJM-1980-052-0, Canad. J. Math. 32 (1980), no. 3, 657–685. Zbl0462.54009MR0586984DOI10.4153/CJM-1980-052-0
- Engelking R., General Topology, PWN-Polish Sci. Publ., Warsaw, 1977. Zbl0684.54001MR0500780
- Fine N.J., Gillman L., Lambek J., Rings of quotients of rings of continuous functions, Lecture Note Series, McGill University Press, Montreal, 1966. MR0200747
- Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
- Gomez-Pérez J., McGovern W.W., 10.1016/j.topol.2005.06.016, Topology Appl. 153 (2006), 1838–1848. Zbl1117.54045MR2227030DOI10.1016/j.topol.2005.06.016
- Iberkleid W., Lafuente-Rodriguez R., McGovern W.Wm., The regular topology on , Comment. Math. Univ. Carolin. 52 (2011), no. 3, 445–461. Zbl1249.54037MR2843236
- Henriksen M., Mitra B., can sometimes determine without being realcompact, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 711–720. Zbl1121.54035MR2259501
- Hewitt E., Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 48 (64) (1948), 54–99. Zbl0032.28603MR0026239
- Johnson D.G., Mandelker M., 10.1016/0016-660X(73)90020-2, General Topology Appl. 3 (1973), 331–338. Zbl0277.54009MR0331310DOI10.1016/0016-660X(73)90020-2
- Di Maio G., Holá L'., Holý D., McCoy D., 10.1016/S0166-8641(97)00114-4, Topology Appl. 86 (1998), 105–122. MR1621396DOI10.1016/S0166-8641(97)00114-4
- Swardson M., A generalization of -spaces and some topological characterizations of GCH, Trans. Amer. Math. Soc. 279 (1983), 661–675. Zbl0535.54023MR0709575
- van Douwen E.K., 10.1016/0166-8641(91)90072-T, Topology Appl. 39 (1991), 3–32. Zbl0755.54008MR1103988DOI10.1016/0166-8641(91)90072-T
- Walker R.C., The Stone-Čech Compactification, Springer, Berlin-Heidelberg-New York, 1974. Zbl0292.54001MR0380698
- Warner S., Topological Rings, North-Holland Mathematics Studies, 178, North-Holland, Ansterdam, 1993. Zbl0785.13008MR1240057
- Wilard S., General Topology, Addison-Wesley, Readings, MA, 1970. MR0264581
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.