Fat bundles and formality
Wojciech Andrzejewski; Aleksy Tralle
Annales Polonici Mathematici (1997)
- Volume: 65, Issue: 2, page 105-118
 - ISSN: 0066-2216
 
Access Full Article
topAbstract
topHow to cite
topWojciech Andrzejewski, and Aleksy Tralle. "Fat bundles and formality." Annales Polonici Mathematici 65.2 (1997): 105-118. <http://eudml.org/doc/269994>.
@article{WojciechAndrzejewski1997,
	abstract = {We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.},
	author = {Wojciech Andrzejewski, Aleksy Tralle},
	journal = {Annales Polonici Mathematici},
	keywords = {fat bundle; formality; symplectic structure; rational homology},
	language = {eng},
	number = {2},
	pages = {105-118},
	title = {Fat bundles and formality},
	url = {http://eudml.org/doc/269994},
	volume = {65},
	year = {1997},
}
TY  - JOUR
AU  - Wojciech Andrzejewski
AU  - Aleksy Tralle
TI  - Fat bundles and formality
JO  - Annales Polonici Mathematici
PY  - 1997
VL  - 65
IS  - 2
SP  - 105
EP  - 118
AB  - We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.
LA  - eng
KW  - fat bundle; formality; symplectic structure; rational homology
UR  - http://eudml.org/doc/269994
ER  - 
References
top- [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993.
 - [2] L. Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniennes, Compositio Math. 30 (1975), 43-61. Zbl0304.53036
 - [3] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
 - [4] A. Dumańska-Małyszko, Z. Stępień and A. Tralle, Generalized symmetric spaces and minimal models, Ann. Polon. Math. 64 (1996), 17-35.
 - [5] V. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, New York, 1976. Zbl0372.57001
 - [6] S. Halperin, Lectures on Minimal Models, Hermann, Paris, 1982.
 - [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publ., New York, 1969. Zbl0175.48504
 - [8] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977).
 - [9] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
 - [10] R. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 536-572. Zbl0114.38203
 - [11] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. Zbl0446.55009
 - [12] I. Vaisman, Symplectic Geometry and Secondary Characteristic Classes, Birkhäuser, Basel, 1988.
 - [13] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. Zbl0361.53058
 - [14] A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), 239-250. Zbl0449.53035
 - [15] P. B. Zwart and W. M. Boothby, On compact, homogeneous symplectic manifolds, Ann. Inst. Fourier (Grenoble) 30 (1) (1980), 129-157. Zbl0417.53028
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.