Fat bundles and formality

Wojciech Andrzejewski; Aleksy Tralle

Annales Polonici Mathematici (1997)

  • Volume: 65, Issue: 2, page 105-118
  • ISSN: 0066-2216

Abstract

top
We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.

How to cite

top

Wojciech Andrzejewski, and Aleksy Tralle. "Fat bundles and formality." Annales Polonici Mathematici 65.2 (1997): 105-118. <http://eudml.org/doc/269994>.

@article{WojciechAndrzejewski1997,
abstract = {We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.},
author = {Wojciech Andrzejewski, Aleksy Tralle},
journal = {Annales Polonici Mathematici},
keywords = {fat bundle; formality; symplectic structure; rational homology},
language = {eng},
number = {2},
pages = {105-118},
title = {Fat bundles and formality},
url = {http://eudml.org/doc/269994},
volume = {65},
year = {1997},
}

TY - JOUR
AU - Wojciech Andrzejewski
AU - Aleksy Tralle
TI - Fat bundles and formality
JO - Annales Polonici Mathematici
PY - 1997
VL - 65
IS - 2
SP - 105
EP - 118
AB - We prove the formality property of total spaces of fat bundles over compact homogeneous spaces. Some rational homotopy obstructions to fatness are obtained.
LA - eng
KW - fat bundle; formality; symplectic structure; rational homology
UR - http://eudml.org/doc/269994
ER -

References

top
  1. [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993. 
  2. [2] L. Bérard-Bergery, Sur certaines fibrations d'espaces homogènes riemanniennes, Compositio Math. 30 (1975), 43-61. Zbl0304.53036
  3. [3] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  4. [4] A. Dumańska-Małyszko, Z. Stępień and A. Tralle, Generalized symmetric spaces and minimal models, Ann. Polon. Math. 64 (1996), 17-35. 
  5. [5] V. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Academic Press, New York, 1976. Zbl0372.57001
  6. [6] S. Halperin, Lectures on Minimal Models, Hermann, Paris, 1982. 
  7. [7] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 2, Interscience Publ., New York, 1969. Zbl0175.48504
  8. [8] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977). 
  9. [9] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  10. [10] R. Narasimhan and S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961), 536-572. Zbl0114.38203
  11. [11] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. Zbl0446.55009
  12. [12] I. Vaisman, Symplectic Geometry and Secondary Characteristic Classes, Birkhäuser, Basel, 1988. 
  13. [13] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. Zbl0361.53058
  14. [14] A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), 239-250. Zbl0449.53035
  15. [15] P. B. Zwart and W. M. Boothby, On compact, homogeneous symplectic manifolds, Ann. Inst. Fourier (Grenoble) 30 (1) (1980), 129-157. Zbl0417.53028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.