Generalized symmetric spaces and minimal models

Anna Dumańska-Małyszko; Zofia Stępień; Aleksy Tralle

Annales Polonici Mathematici (1996)

  • Volume: 64, Issue: 1, page 17-35
  • ISSN: 0066-2216

Abstract

top
We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.

How to cite

top

Anna Dumańska-Małyszko, Zofia Stępień, and Aleksy Tralle. "Generalized symmetric spaces and minimal models." Annales Polonici Mathematici 64.1 (1996): 17-35. <http://eudml.org/doc/269981>.

@article{AnnaDumańska1996,
abstract = {We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.},
author = {Anna Dumańska-Małyszko, Zofia Stępień, Aleksy Tralle},
journal = {Annales Polonici Mathematici},
keywords = {minimal model; Koszul complex; generalized symmetric space; formality in the sense of Sullivan},
language = {eng},
number = {1},
pages = {17-35},
title = {Generalized symmetric spaces and minimal models},
url = {http://eudml.org/doc/269981},
volume = {64},
year = {1996},
}

TY - JOUR
AU - Anna Dumańska-Małyszko
AU - Zofia Stępień
AU - Aleksy Tralle
TI - Generalized symmetric spaces and minimal models
JO - Annales Polonici Mathematici
PY - 1996
VL - 64
IS - 1
SP - 17
EP - 35
AB - We prove that any compact simply connected manifold carrying a structure of Riemannian 3- or 4-symmetric space is formal in the sense of Sullivan. This result generalizes Sullivan's classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces techniques based on the Hodge theory do not work. We use the Thomas theory of minimal models of fibrations and the classification of 3- and 4-symmetric spaces.
LA - eng
KW - minimal model; Koszul complex; generalized symmetric space; formality in the sense of Sullivan
UR - http://eudml.org/doc/269981
ER -

References

top
  1. [1] C. Allday and V. Puppe, Cohomology Theory of Transformation Groups, Cambridge Univ. Press, 1993. 
  2. [2] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. Zbl0312.55011
  3. [3] L. Flatto, Invariants of reflection groups, Enseign. Math. 28 (1978), 237-293. Zbl0401.20041
  4. [4] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369. Zbl0275.53026
  5. [5] V. Greub, S. Halperin and R. Vanstone, Curvature, Connections and Cohomology, Vol. 3, Acad. Press, 1976. Zbl0372.57001
  6. [6] S. Halperin, Lectures on Minimal Models, Hermann, 1982. 
  7. [7] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Acad. Press, 1978. 
  8. [8] J. A. Jiménez, Riemannian 4-symmetric spaces, Trans. Amer. Math. Soc. 306 (1988), 715-734. Zbl0647.53039
  9. [9] O. Kowalski, Classification of generalized Riemannian symmetric spaces of dimension ≤ 5, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd 85 (1975). 
  10. [10] O. Kowalski, Generalized Symmetric Spaces, Springer, 1980. Zbl0431.53042
  11. [11] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, 1985. Zbl0563.13001
  12. [12] D. Lehmann, Théorie homotopique des formes différentielles (d'après D. Sullivan), Astérisque 45 (1977). 
  13. [13] G. Lupton and J. Oprea, Symplectic manifolds and formality, J. Pure Appl. Algebra 91 (1994), 193-207. Zbl0789.55010
  14. [14] T. Miller and J. Neisendorfer, Formal and coformal spaces, Illinois J. Math. 22 (1978), 565-580. Zbl0396.55011
  15. [15] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1977), 269-331. Zbl0374.57002
  16. [16] M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1962), 313-328. Zbl0108.35802
  17. [17] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Springer, 1988. 
  18. [18] J.-C. Thomas, Homotopie rationnelle des fibrés de Serre, Ph.D. Thesis, Université des Sciences et Techniques de Lille 1, 1980. 
  19. [19] J.-C. Thomas, Rational homotopy of Serre fibrations, Ann. Inst. Fourier (Grenoble) 31 (3) (1981), 71-90. Zbl0446.55009
  20. [20] M. Vigué-Poirrier and D. Sullivan, Cohomology theory of the closed geodesic problem, J. Differential Geom. 11 (1976), 633-644. Zbl0361.53058
  21. [21] R. O. Wells, Differential Analysis on Complex Manifolds, Prentice-Hall, 1973. Zbl0262.32005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.