# Sur une algèbre Q-symétrique

Annales Polonici Mathematici (1997)

- Volume: 66, Issue: 1, page 123-135
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topA. Guichardet. "Sur une algèbre Q-symétrique." Annales Polonici Mathematici 66.1 (1997): 123-135. <http://eudml.org/doc/270022>.

@article{A1997,

abstract = {We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.},

author = {A. Guichardet},

journal = {Annales Polonici Mathematici},

keywords = {deformations; derivations; symplectic leaves; representations; quadratic algebras; deformations of symmetric algebras; Hochschild cohomology groups; Poisson structures; irreducible involutive representations},

language = {fre},

number = {1},

pages = {123-135},

title = {Sur une algèbre Q-symétrique},

url = {http://eudml.org/doc/270022},

volume = {66},

year = {1997},

}

TY - JOUR

AU - A. Guichardet

TI - Sur une algèbre Q-symétrique

JO - Annales Polonici Mathematici

PY - 1997

VL - 66

IS - 1

SP - 123

EP - 135

AB - We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.

LA - fre

KW - deformations; derivations; symplectic leaves; representations; quadratic algebras; deformations of symmetric algebras; Hochschild cohomology groups; Poisson structures; irreducible involutive representations

UR - http://eudml.org/doc/270022

ER -

## References

top- [1] J. Alev et M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), 1787-1802. Zbl0760.17003
- [2] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527. Zbl0864.17006
- [3] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, The 3-dimensional Euclidean quantum group $E{\left(3\right)}_{q}$ and its R-matrix, J. Math. Phys. 32 (1991), 1159-1165. Zbl0743.17017
- [4] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994. Zbl0839.17009
- [5] A. Guichardet, Groupes quantiques, InterEditions, 1995.
- [6] C. Kassel, Quantum Groups, Springer, 1995.
- [7] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51. Zbl0353.16004
- [8] Ya. S. Soĭbel'man, The algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1) (1990), 190-212 (in Russian); English transl.: Leningrad Math. J. 2 (1) (1991), 161-178. Zbl0708.46029
- [9] L. L. Vaksman and Y. S. Soĭbel'man, An algebra of functions on the quantum group SU(2), Funktsional. Anal. i Prilozhen. 22 (3) (1988), 1-14 (in Russian); English transl.: Funct. Anal. Appl. 22 (3) (1988), 170-181. Zbl0661.43001
- [10] M. Van den Bergh, Noncommutative homology of some 3-dimensional quantum spaces, K-Theory 8 (1994), 213-230.
- [11] M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1089-1156. Zbl0810.16010
- [12] S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251-263. Zbl0752.17017

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.