Sur une algèbre Q-symétrique

A. Guichardet

Annales Polonici Mathematici (1997)

  • Volume: 66, Issue: 1, page 123-135
  • ISSN: 0066-2216

Abstract

top
We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.

How to cite

top

A. Guichardet. "Sur une algèbre Q-symétrique." Annales Polonici Mathematici 66.1 (1997): 123-135. <http://eudml.org/doc/270022>.

@article{A1997,
abstract = {We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.},
author = {A. Guichardet},
journal = {Annales Polonici Mathematici},
keywords = {deformations; derivations; symplectic leaves; representations; quadratic algebras; deformations of symmetric algebras; Hochschild cohomology groups; Poisson structures; irreducible involutive representations},
language = {fre},
number = {1},
pages = {123-135},
title = {Sur une algèbre Q-symétrique},
url = {http://eudml.org/doc/270022},
volume = {66},
year = {1997},
}

TY - JOUR
AU - A. Guichardet
TI - Sur une algèbre Q-symétrique
JO - Annales Polonici Mathematici
PY - 1997
VL - 66
IS - 1
SP - 123
EP - 135
AB - We establish several properties of a quadratic algebra over a field k, which is a deformation of the symmetric algebra Sk³. In particular, we prove that A is an integral domain, noetherian and Koszul; we compute its first Hochschild cohomology group; we determine the corresponding Poisson structure on k³ and its symplectic leaves; we define an involution on A and describe the corresponding irreducible involutive representations.
LA - fre
KW - deformations; derivations; symplectic leaves; representations; quadratic algebras; deformations of symmetric algebras; Hochschild cohomology groups; Poisson structures; irreducible involutive representations
UR - http://eudml.org/doc/270022
ER -

References

top
  1. [1] J. Alev et M. Chamarie, Dérivations et automorphismes de quelques algèbres quantiques, Comm. Algebra 20 (1992), 1787-1802. Zbl0760.17003
  2. [2] A. Beilinson, V. Ginzburg and W. Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473-527. Zbl0864.17006
  3. [3] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, The 3-dimensional Euclidean quantum group E ( 3 ) q and its R-matrix, J. Math. Phys. 32 (1991), 1159-1165. Zbl0743.17017
  4. [4] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, 1994. Zbl0839.17009
  5. [5] A. Guichardet, Groupes quantiques, InterEditions, 1995. 
  6. [6] C. Kassel, Quantum Groups, Springer, 1995. 
  7. [7] R. K. Molnar, Semi-direct products of Hopf algebras, J. Algebra 47 (1977), 29-51. Zbl0353.16004
  8. [8] Ya. S. Soĭbel'man, The algebra of functions on a compact quantum group and its representations, Algebra i Analiz 2 (1) (1990), 190-212 (in Russian); English transl.: Leningrad Math. J. 2 (1) (1991), 161-178. Zbl0708.46029
  9. [9] L. L. Vaksman and Y. S. Soĭbel'man, An algebra of functions on the quantum group SU(2), Funktsional. Anal. i Prilozhen. 22 (3) (1988), 1-14 (in Russian); English transl.: Funct. Anal. Appl. 22 (3) (1988), 170-181. Zbl0661.43001
  10. [10] M. Van den Bergh, Noncommutative homology of some 3-dimensional quantum spaces, K-Theory 8 (1994), 213-230. 
  11. [11] M. Wambst, Complexes de Koszul quantiques, Ann. Inst. Fourier (Grenoble) 43 (1993), 1089-1156. Zbl0810.16010
  12. [12] S. L. Woronowicz, Quantum E(2) group and its Pontryagin dual, Lett. Math. Phys. 23 (1991), 251-263. Zbl0752.17017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.