Drive network to a desired orbit by pinning control

Quanjun Wu; Hua Zhang

Kybernetika (2015)

  • Volume: 51, Issue: 1, page 150-172
  • ISSN: 0023-5954

Abstract

top
The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology.

How to cite

top

Wu, Quanjun, and Zhang, Hua. "Drive network to a desired orbit by pinning control." Kybernetika 51.1 (2015): 150-172. <http://eudml.org/doc/270033>.

@article{Wu2015,
abstract = {The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology.},
author = {Wu, Quanjun, Zhang, Hua},
journal = {Kybernetika},
keywords = {complex dynamical network; pinning control; directed coupling; time delay; DCN oscillator; complex dynamical network; pinning control; directed coupling; time delay; DCN oscillator},
language = {eng},
number = {1},
pages = {150-172},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Drive network to a desired orbit by pinning control},
url = {http://eudml.org/doc/270033},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Wu, Quanjun
AU - Zhang, Hua
TI - Drive network to a desired orbit by pinning control
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 1
SP - 150
EP - 172
AB - The primary objective of the present paper is to develop an approach for analyzing pinning synchronization stability in a complex delayed dynamical network with directed coupling. Some simple yet generic criteria for pinning such coupled network are derived analytically. Compared with some existing works, the primary contribution is that the synchronization manifold could be chosen as a weighted average of all the nodes states in the network for the sake of practical control tactics, which displays the different influences and contributions of the various nodes in synchronization seeking processes of the dynamical network. Furthermore, it is shown that in order to drive a complex network to a desired synchronization state, the coupling strength should vary according to the controller. In addition, the theoretical results about the time-invariant network is extended to the time-varying network, and the result on synchronization problem can also be extended to the consensus problem of networked multi-agent systems. Subsequently, the theoretic results are illustrated by a typical scale-free (SF) neuronal network. Numerical simulations with three kinds of the homogenous solutions, including an equilibrium point, a periodic orbit, and a chaotic attractor, are finally given to demonstrate the effectiveness of the proposed control methodology.
LA - eng
KW - complex dynamical network; pinning control; directed coupling; time delay; DCN oscillator; complex dynamical network; pinning control; directed coupling; time delay; DCN oscillator
UR - http://eudml.org/doc/270033
ER -

References

top
  1. Arenas, A., Diaz-Guilera, A., Kurths, J., Morenob, Y., Zhoug, C., 10.1016/j.physrep.2008.09.002, Phys. Rep. 469 (2008), 93-153. MR2477097DOI10.1016/j.physrep.2008.09.002
  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U., 10.1016/j.physrep.2005.10.009, Phys. Rep. 424 (2006), 175-308. MR2193621DOI10.1016/j.physrep.2005.10.009
  3. Cai, S. M., Zhou, J., Xiang, L., Liu, Z. R., 10.1016/j.physleta.2008.05.077, Phys. Lett. A 372 (2008), 4990-4995. Zbl1221.34075DOI10.1016/j.physleta.2008.05.077
  4. Cai, S. M., He, Q. B., Hao, J. J., Liu, Z. R., 10.1016/j.physleta.2010.04.023, Phys. Lett. A 374 (2010), 2539-2550. Zbl1236.05185MR2640029DOI10.1016/j.physleta.2010.04.023
  5. Chen, T. P., Liu, X. W., Lu, W. L., 10.1109/tcsi.2007.895383, IEEE Trans. Circuits Syst. I. Reg. Pap. 54 (2007), 1317-1326. MR2370589DOI10.1109/tcsi.2007.895383
  6. Chen, Y., Lü, J. H., Yu, X. H., Lin, Z. L., 10.1137/110850116, SIAM J. Control Optim. 51 (2013), 3274-3301. Zbl1275.93005MR3090151DOI10.1137/110850116
  7. Chen, Y., Lü, J. H., Lin, Z. L., 10.1016/j.automatica.2013.02.021, Automatica 49 (2013), 1768-1775. MR3049226DOI10.1016/j.automatica.2013.02.021
  8. Guo, W. L., Austin, F., Chen, S. H., Sun, W., 10.1016/j.physleta.2009.03.003, Phys. Lett. A 373 (2009), 1565-1572. Zbl1228.05266MR2513417DOI10.1016/j.physleta.2009.03.003
  9. Li, Z., Lee, J. J., 10.1063/1.2804525, Chaos 17 (2007), 043117-043117. Zbl1163.37347MR2380036DOI10.1063/1.2804525
  10. Li, X., Wang, X. F., Chen, G. R., 10.1109/tcsi.2004.835655, IEEE Trans. Circuits Syst. I. Reg. Pap. 51 (2004), 2074-2087. MR2096915DOI10.1109/tcsi.2004.835655
  11. Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H., Generallized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 190-205. MR2954320
  12. Liu, B., Lu, W. L., Chen, T. P., 10.1109/tnnls.2013.2247059, IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), 1141-1149. DOI10.1109/tnnls.2013.2247059
  13. Lu, H. T., 10.1016/s0375-9601(02)00538-8, Phys. Lett. A 298 (2002), 109-116. Zbl0995.92004DOI10.1016/s0375-9601(02)00538-8
  14. Lu, W. L., 10.1063/1.2737829, Chaos 17 (2007), 023122-023122. Zbl1159.37366MR2340616DOI10.1063/1.2737829
  15. Lu, W. L., Chen, T. P., 10.1016/j.physd.2005.11.009, Phys. D 213 (2006), 214-230. Zbl1105.34031MR2201200DOI10.1016/j.physd.2005.11.009
  16. Lu, S. J, Chen, L., A general synchronization method of chaotic communication system via kalman filtering., Kybernetika 44 (2008), 43-52. MR2405054
  17. Lu, J. Q., Wang, Z. D., Cao, J. D., Ho, D. W. C., Kurths, J., 10.1142/s0218127412501763, Int. J. Bifurc. Chaos 22 (2012), 1250176-1250176. Zbl1270.92006DOI10.1142/s0218127412501763
  18. Lü, J. H., Yu, X., Chen, G. R., Cheng, D. Z., 10.1109/tcsi.2004.823672, IEEE Trans. Circuits Syst. I. Reg. Pap. 51 (2004), 787-796. MR2066214DOI10.1109/tcsi.2004.823672
  19. Lü, J. H., Yu, X., Chen, G. R., 10.1016/j.physa.2003.10.052, Phys. A 334 (2004), 281-302. MR2044940DOI10.1016/j.physa.2003.10.052
  20. Lü, J. H., Chen, G. R., 10.1109/tac.2005.849233, IEEE Trans. Automat. Control 50 (2005), 841-846. MR2142000DOI10.1109/tac.2005.849233
  21. Ma, M. H., Zhang, H., Cai, J. P., Zhou, J., Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch., Kybernetika 49 (2013), 539-553. Zbl1274.70039MR3117913
  22. Porfiri, M., Bernardo, M. di, 10.1016/j.automatica.2008.05.006, Automatica 44 (2008), 3100-3106. Zbl1153.93329MR2531411DOI10.1016/j.automatica.2008.05.006
  23. Porfiri, M., Fiorilli, F., 10.1063/1.3080192, Chaos 19 (2009), 013122-013122. MR2513766DOI10.1063/1.3080192
  24. Song, Q., Cao, J. D., 10.1109/tcsi.2009.2024971, IEEE Trans. Circuits Syst. I. Reg. Pap. 57 (2010), 672-680. MR2729966DOI10.1109/tcsi.2009.2024971
  25. Sorrentino, F., Bernardo, M., Garofalo, F., Chen, G. R., 10.1103/physreve.75.046103, Phys. Rev. E 75 (2007), 046103-046103. DOI10.1103/physreve.75.046103
  26. Tang, Y., Wang, Z. D., Fang, J A., 10.1063/1.3068350, Chaos 19 (2009), 013112-013112. MR2513760DOI10.1063/1.3068350
  27. Wang, X. F., Chen, G. R., 10.1109/81.974874, IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 49 (2002), 54-62. MR1874226DOI10.1109/81.974874
  28. Wang, X. F., Chen, G. R., 10.1142/s0218127402004292, Int. J. Bifurc. Chaos 12 (2002), 187-192. DOI10.1142/s0218127402004292
  29. Wang, X. F., Chen, G. R., 10.1016/s0378-4371(02)00772-0, Phys. A 310 (2002), 521-531. Zbl0995.90008MR1946327DOI10.1016/s0378-4371(02)00772-0
  30. Wu, Y. Y., Wei, W., Li, G. Y., Xiang, J., 10.1109/tcsii.2009.2015350, IEEE Trans. Circuits Syst. II Exp. Briefs 56 (2009), 235-239. DOI10.1109/tcsii.2009.2015350
  31. Wu, W., Zhou, W. J., Chen, T. P., 10.1109/tcsi.2008.2003373, IEEE Trans. Circuits Syst. I. Reg. Pap. 56 (2009), 829-839. MR2724977DOI10.1109/tcsi.2008.2003373
  32. Xia, W. G., Cao, J. D., 10.1063/1.3071933, Chaos 19 (2009), 013120-013120. MR2513764DOI10.1063/1.3071933
  33. Xiang, J., Chen, G. R., 10.1109/tac.2009.2020668, IEEE Trans. Automat. Control 54 (2009), 1869-1875. MR2552820DOI10.1109/tac.2009.2020668
  34. Xiang, L. Y., Liu, Z. X., Chen, Z. Q., Chen, F., Yuan, Z. Z., 10.1016/j.physa.2006.12.037, Phys. A 379 (2007), 298-306. DOI10.1016/j.physa.2006.12.037
  35. Xiang, L. Y., Zhu, J. J. H., 10.1007/s11071-010-9865-5, Nonlin. Dynam. 64 (2011), 339-348. MR2803214DOI10.1007/s11071-010-9865-5
  36. Yu, W. W., Chen, G. R., Lü, J. H., 10.1016/j.automatica.2008.07.016, Automatica 45 (2009), 429-435. Zbl1158.93308MR2527339DOI10.1016/j.automatica.2008.07.016
  37. Zhou, J., Chen, T. P., 10.1109/tcsi.2005.859050, IEEE Trans. Circuits Syst. I. Reg. Pap. 53 (2006), 733-744. MR2212426DOI10.1109/tcsi.2005.859050
  38. Zhou, J., Lu, J. A., Lü, J. H., 10.1109/tac.2006.872760, IEEE Trans. Automat. Control 51 (2006), 652-656. MR2228029DOI10.1109/tac.2006.872760
  39. Zhou, J., Lu, J. A., Lü, J. H., 10.1016/j.automatica.2007.08.016, Automatica 44 (2008), 996-1003. Zbl1158.93339MR2530942DOI10.1016/j.automatica.2007.08.016
  40. Zhou, J., Wu, Q. J., Xiang, L., 10.1109/tcsi.2011.2161363, IEEE Trans. Circuits Syst. I. Reg. Pap. 58 (2011), 2882-2893. MR2907084DOI10.1109/tcsi.2011.2161363
  41. Zhou, J., Wu, Q. J., Xiang, L., 10.1007/s11071-012-0355-9, Nonlin. Dynam. 69 (2012), 1393-1403. MR2943393DOI10.1007/s11071-012-0355-9
  42. Zhou, J., Wu, Q. J., Xiang, L., Cai, S. M., Liu, Z. R., 10.1016/j.nahs.2010.10.013, Nonlin. Anal.: Hybrid Syst. 5 (2011), 513-524. MR2819260DOI10.1016/j.nahs.2010.10.013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.