Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch

Mihua Ma; Hua Zhang; Jianping Cai; Jin Zhou

Kybernetika (2013)

  • Volume: 49, Issue: 4, page 539-553
  • ISSN: 0023-5954

Abstract

top
This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.

How to cite

top

Ma, Mihua, et al. "Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch." Kybernetika 49.4 (2013): 539-553. <http://eudml.org/doc/260649>.

@article{Ma2013,
abstract = {This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.},
author = {Ma, Mihua, Zhang, Hua, Cai, Jianping, Zhou, Jin},
journal = {Kybernetika},
keywords = {practical synchronization; impulsive control; $n$-dimensional nonautonomous systems; parameter mismatch; gyrostat system; practical synchronization; impulsive control; -dimensional nonautonomous systems; parameter mismatch; gyrostat system},
language = {eng},
number = {4},
pages = {539-553},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch},
url = {http://eudml.org/doc/260649},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Ma, Mihua
AU - Zhang, Hua
AU - Cai, Jianping
AU - Zhou, Jin
TI - Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 539
EP - 553
AB - This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.
LA - eng
KW - practical synchronization; impulsive control; $n$-dimensional nonautonomous systems; parameter mismatch; gyrostat system; practical synchronization; impulsive control; -dimensional nonautonomous systems; parameter mismatch; gyrostat system
UR - http://eudml.org/doc/260649
ER -

References

top
  1. V. Astakhov, V., 10.1103/PhysRevE.58.5620, Phys. Rev. E 58 (1998), 5620-5628. DOI10.1103/PhysRevE.58.5620
  2. Cai, J. P., Ma, M. H., Wu, X. F., 10.1142/S0217979211100254, Internat. J. Mod. Phys. B 25 (2011), 2195-2215. DOI10.1142/S0217979211100254
  3. Cai, S. M., Hao, J. J., Liu, Z. G., Chaos quasi-synchronization induced by impulses with parameter mismatches., Chaos 21 (2011), 023112. MR2849960
  4. Chen, G., Zhou, J., Čelikovský, C., 10.1109/TAC.2005.849250, IEEE Trans. Automat. Control 50 (2005), 869-874. MR2142006DOI10.1109/TAC.2005.849250
  5. Chen, Y., Wu, X. F., Gui, Z. F., 10.1142/S0218127411029239, Internat. J. Bifur. Chaos 21 (2011), 1369-1382. Zbl1248.34077MR2819827DOI10.1142/S0218127411029239
  6. Ge, Z. M., Leu, W. Y., 10.1016/j.chaos.2003.07.001, Chaos, Solitons and Fractals 20 (2004), 503-521. Zbl1048.37077DOI10.1016/j.chaos.2003.07.001
  7. Ge, Z. M., Lin, T. N., 10.1006/jsvi.2001.3995, J. Sound Vibration 251 (2002), 519-542. Zbl1237.70019MR1897547DOI10.1006/jsvi.2001.3995
  8. Ge, Z. M., Yu, T. C., Chen, Y. S., 10.1016/S0022-460X(02)01607-3, J. Sound Vibration 268 (2003), 731-749. DOI10.1016/S0022-460X(02)01607-3
  9. Horn, R. A., Johnson, C. R., Matrix Analysis., Cambridge University, Cambridge 1985. Zbl0801.15001MR0832183
  10. Huang, T. W., Li, C. D., Liao, X. F., 10.1063/1.2776668, Chaos 17 (2007), 033121. Zbl1163.37335MR2356975DOI10.1063/1.2776668
  11. Jalnine, A., Kim, S. Y., 10.1103/PhysRevE.65.026210, Phys. Rev. E 65 (2002), 026210-026216. DOI10.1103/PhysRevE.65.026210
  12. Koofigar, H. R., Sheikholeslam, F., Hosseinnia, S., 10.1063/1.3671969, Chaos 21 (2011), 043134. DOI10.1063/1.3671969
  13. Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H., Generallized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 190-205. MR2954320
  14. Lu, S. J., Chen, L., A general synchronization method of chaotic communication system via kalman filtering., Kybernetika 44 (2008), 43-52. MR2405054
  15. Ma, M. H., Cai, J. P., 10.1142/S0217979211100916, Internat. J. Mod. Phys. B 25 (2011), 2493-2506. MR2822998DOI10.1142/S0217979211100916
  16. Ma, M. H., Zhou, J., Cai, J. P., Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications., Nonlinear Dyn. 69 (2012), 3, 1285-1292. Zbl1258.34126MR2943385
  17. Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. MR1038263DOI10.1103/PhysRevLett.64.821
  18. Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C., Synchronization with error bound of non-identical forced oscillators., Kybernetika 44 (2008), 534-545. Zbl1173.70009MR2459071
  19. Wang, L. P., Yuan, Z. T., Chen, X. H., Zhou, Z. F., 10.1016/j.cnsns.2010.04.029, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 987-992. Zbl1221.37226MR2725820DOI10.1016/j.cnsns.2010.04.029
  20. Wu, X. F., Cai, J. P., Wang, M. H., 10.1016/j.jsv.2007.04.034, J. Sound Vibration 305 (2007), 481-491. Zbl1242.93123MR2324743DOI10.1016/j.jsv.2007.04.034
  21. Yang, T., Impulsive Control Theory., Springer, Berlin 2001. Zbl0996.93003MR1850661
  22. Zhang, W., Huang, J. J., Wei, P. C., 10.1016/j.apm.2010.07.009, Appl. Math. Model. 35 (2011), 612-620. Zbl1205.93125MR2718458DOI10.1016/j.apm.2010.07.009
  23. Zhou, J., Xiang, L., Liu, Z. R., 10.1016/j.physa.2007.07.006, Phys. A 385 (2007), 729-742. MR2584888DOI10.1016/j.physa.2007.07.006
  24. Zhu, Z. L., Li, S. P., Yu, H., A new approach to generallized chaos synchronization based on the stability of the error system., Kybernetika 44 (2008), 492-500. MR2459067

Citations in EuDML Documents

top
  1. Xiaobing Zhou, Murong Jiang, Yaqun Huang, Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
  2. Liyun Zhao, Jun Liu, Lan Xiang, Jin Zhou, Group synchronization of diffusively coupled harmonic oscillators
  3. Song Zheng, Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems
  4. Quanjun Wu, Hua Zhang, Drive network to a desired orbit by pinning control
  5. Ke Ding, Qing-Long Han, Synchronization of two coupled Hindmarsh-Rose neurons

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.