Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch
Mihua Ma; Hua Zhang; Jianping Cai; Jin Zhou
Kybernetika (2013)
- Volume: 49, Issue: 4, page 539-553
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMa, Mihua, et al. "Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch." Kybernetika 49.4 (2013): 539-553. <http://eudml.org/doc/260649>.
@article{Ma2013,
abstract = {This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.},
author = {Ma, Mihua, Zhang, Hua, Cai, Jianping, Zhou, Jin},
journal = {Kybernetika},
keywords = {practical synchronization; impulsive control; $n$-dimensional nonautonomous systems; parameter mismatch; gyrostat system; practical synchronization; impulsive control; -dimensional nonautonomous systems; parameter mismatch; gyrostat system},
language = {eng},
number = {4},
pages = {539-553},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch},
url = {http://eudml.org/doc/260649},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Ma, Mihua
AU - Zhang, Hua
AU - Cai, Jianping
AU - Zhou, Jin
TI - Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 4
SP - 539
EP - 553
AB - This paper is concerned with impulsive practical synchronization in a class of n-dimensional nonautonomous dynamical systems with parameter mismatch. Some simple yet general algebraic synchronization criteria are derived based on the developed practical stability theory on impulsive dynamical systems. A distinctive feature of this work is that the impulsive control strategy is used to make n-dimensional nonautonomous dynamical systems with parameter mismatch achieve practical synchronization, where the parameter mismatch likewise exist in both system parameters and external excitation ones, and the synchronization error bound can be estimated by an analytical expression. Subsequently, the obtained results are applied to a typical gyrostat system, and numerical simulations demonstrate the effectiveness of the criteria and the robustness of the control technique.
LA - eng
KW - practical synchronization; impulsive control; $n$-dimensional nonautonomous systems; parameter mismatch; gyrostat system; practical synchronization; impulsive control; -dimensional nonautonomous systems; parameter mismatch; gyrostat system
UR - http://eudml.org/doc/260649
ER -
References
top- V. Astakhov, V., 10.1103/PhysRevE.58.5620, Phys. Rev. E 58 (1998), 5620-5628. DOI10.1103/PhysRevE.58.5620
- Cai, J. P., Ma, M. H., Wu, X. F., 10.1142/S0217979211100254, Internat. J. Mod. Phys. B 25 (2011), 2195-2215. DOI10.1142/S0217979211100254
- Cai, S. M., Hao, J. J., Liu, Z. G., Chaos quasi-synchronization induced by impulses with parameter mismatches., Chaos 21 (2011), 023112. MR2849960
- Chen, G., Zhou, J., Čelikovský, C., 10.1109/TAC.2005.849250, IEEE Trans. Automat. Control 50 (2005), 869-874. MR2142006DOI10.1109/TAC.2005.849250
- Chen, Y., Wu, X. F., Gui, Z. F., 10.1142/S0218127411029239, Internat. J. Bifur. Chaos 21 (2011), 1369-1382. Zbl1248.34077MR2819827DOI10.1142/S0218127411029239
- Ge, Z. M., Leu, W. Y., 10.1016/j.chaos.2003.07.001, Chaos, Solitons and Fractals 20 (2004), 503-521. Zbl1048.37077DOI10.1016/j.chaos.2003.07.001
- Ge, Z. M., Lin, T. N., 10.1006/jsvi.2001.3995, J. Sound Vibration 251 (2002), 519-542. Zbl1237.70019MR1897547DOI10.1006/jsvi.2001.3995
- Ge, Z. M., Yu, T. C., Chen, Y. S., 10.1016/S0022-460X(02)01607-3, J. Sound Vibration 268 (2003), 731-749. DOI10.1016/S0022-460X(02)01607-3
- Horn, R. A., Johnson, C. R., Matrix Analysis., Cambridge University, Cambridge 1985. Zbl0801.15001MR0832183
- Huang, T. W., Li, C. D., Liao, X. F., 10.1063/1.2776668, Chaos 17 (2007), 033121. Zbl1163.37335MR2356975DOI10.1063/1.2776668
- Jalnine, A., Kim, S. Y., 10.1103/PhysRevE.65.026210, Phys. Rev. E 65 (2002), 026210-026216. DOI10.1103/PhysRevE.65.026210
- Koofigar, H. R., Sheikholeslam, F., Hosseinnia, S., 10.1063/1.3671969, Chaos 21 (2011), 043134. DOI10.1063/1.3671969
- Liang, H. T., Wang, Z., Yue, Z. M., Lu, R. H., Generallized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication., Kybernetika 48 (2012), 190-205. MR2954320
- Lu, S. J., Chen, L., A general synchronization method of chaotic communication system via kalman filtering., Kybernetika 44 (2008), 43-52. MR2405054
- Ma, M. H., Cai, J. P., 10.1142/S0217979211100916, Internat. J. Mod. Phys. B 25 (2011), 2493-2506. MR2822998DOI10.1142/S0217979211100916
- Ma, M. H., Zhou, J., Cai, J. P., Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications., Nonlinear Dyn. 69 (2012), 3, 1285-1292. Zbl1258.34126MR2943385
- Pecora, L. M., Carroll, T. L., 10.1103/PhysRevLett.64.821, Phys. Rev. Lett. 64 (1990), 821-824. MR1038263DOI10.1103/PhysRevLett.64.821
- Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C., Synchronization with error bound of non-identical forced oscillators., Kybernetika 44 (2008), 534-545. Zbl1173.70009MR2459071
- Wang, L. P., Yuan, Z. T., Chen, X. H., Zhou, Z. F., 10.1016/j.cnsns.2010.04.029, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 987-992. Zbl1221.37226MR2725820DOI10.1016/j.cnsns.2010.04.029
- Wu, X. F., Cai, J. P., Wang, M. H., 10.1016/j.jsv.2007.04.034, J. Sound Vibration 305 (2007), 481-491. Zbl1242.93123MR2324743DOI10.1016/j.jsv.2007.04.034
- Yang, T., Impulsive Control Theory., Springer, Berlin 2001. Zbl0996.93003MR1850661
- Zhang, W., Huang, J. J., Wei, P. C., 10.1016/j.apm.2010.07.009, Appl. Math. Model. 35 (2011), 612-620. Zbl1205.93125MR2718458DOI10.1016/j.apm.2010.07.009
- Zhou, J., Xiang, L., Liu, Z. R., 10.1016/j.physa.2007.07.006, Phys. A 385 (2007), 729-742. MR2584888DOI10.1016/j.physa.2007.07.006
- Zhu, Z. L., Li, S. P., Yu, H., A new approach to generallized chaos synchronization based on the stability of the error system., Kybernetika 44 (2008), 492-500. MR2459067
Citations in EuDML Documents
top- Xiaobing Zhou, Murong Jiang, Yaqun Huang, Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification
- Liyun Zhao, Jun Liu, Lan Xiang, Jin Zhou, Group synchronization of diffusively coupled harmonic oscillators
- Song Zheng, Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems
- Quanjun Wu, Hua Zhang, Drive network to a desired orbit by pinning control
- Ke Ding, Qing-Long Han, Synchronization of two coupled Hindmarsh-Rose neurons
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.