Ojective ideals in modular lattices
Shriram K. Nimbhorkar; Rupal C. Shroff
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 161-178
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNimbhorkar, Shriram K., and Shroff, Rupal C.. "Ojective ideals in modular lattices." Czechoslovak Mathematical Journal 65.1 (2015): 161-178. <http://eudml.org/doc/270038>.
@article{Nimbhorkar2015,
abstract = {The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.},
author = {Nimbhorkar, Shriram K., Shroff, Rupal C.},
journal = {Czechoslovak Mathematical Journal},
keywords = {modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal; modular lattices; lattices of ideals; essential ideals; extending ideals; direct summands; exchangeable decompositions; ojective ideals},
language = {eng},
number = {1},
pages = {161-178},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ojective ideals in modular lattices},
url = {http://eudml.org/doc/270038},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Nimbhorkar, Shriram K.
AU - Shroff, Rupal C.
TI - Ojective ideals in modular lattices
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 161
EP - 178
AB - The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is shown that a finite decomposition of an extending ideal is exchangeable if and only if its summands are mutually ojective.
LA - eng
KW - modular lattice; essential ideal; max-semicomplement; extending ideal; direct summand; exchangeable decomposition; ojective ideal; modular lattices; lattices of ideals; essential ideals; extending ideals; direct summands; exchangeable decompositions; ojective ideals
UR - http://eudml.org/doc/270038
ER -
References
top- Akalan, E., Birkenmeier, G. F., Tercan, A., 10.1080/00927870802254843, Commun. Algebra 37 (2009), 663-683; Corrigendum. 38 4747-4748 (2010); Corrigendum. 41 2005 (2013). (2013) Zbl1278.16005MR2493810DOI10.1080/00927870802254843
- Birkenmeier, G. F., Müller, B. J., Rizvi, S. T., 10.1080/00927870209342387, Commun. Algebra 30 (2002), 1395-1415. (2002) Zbl1006.16010MR1892606DOI10.1080/00927870209342387
- Grätzer, G., General Lattice Theory, Birkhäuser Basel (1998). (1998) MR1670580
- Grzeszczuk, P., Puczyłowski, E. R., 10.1080/00927879808826319, Commun. Algebra 26 (1998), 2949-2957. (1998) Zbl0914.06003MR1635878DOI10.1080/00927879808826319
- Grzeszczuk, P., Puczyłowski, E. R., 10.1016/0022-4049(84)90075-6, J. Pure Appl. Algebra 31 (1984), 47-54. (1984) Zbl0528.16010MR0738204DOI10.1016/0022-4049(84)90075-6
- Hanada, K., Kuratomi, Y., Oshiro, K., 10.1006/jabr.2001.9089, J. Algebra 250 (2002), 115-133. (2002) Zbl1007.16005MR1898379DOI10.1006/jabr.2001.9089
- Harmanci, A., Smith, P. F., Finite direct sums of CS-modules, Houston J. Math. 19 (1993), 523-532. (1993) Zbl0802.16006MR1251607
- Kamal, M. A., Müller, B. J., Extending modules over commutative domains, Osaka J. Math. 25 (1988), 531-538. (1988) Zbl0715.13006MR0969016
- Kamal, M. A., Müller, B. J., The structure of extending modules over Noetherian rings, Osaka J. Math. 25 (1988), 539-551. (1988) Zbl0715.16005MR0969017
- Kamal, M. A., Müller, B. J., Torsion free extending modules, Osaka J. Math. 25 (1988), 825-832. (1988) Zbl0703.13010MR0983803
- Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189 Springer, New York (1999). (1999) MR1653294DOI10.1007/978-1-4612-0525-8
- Mohamed, S. H., Müller, B. J., 10.1081/AGB-120013218, Commun. Algebra 30 (2002), 1817-1827. (2002) Zbl0998.16005MR1894046DOI10.1081/AGB-120013218
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.