Direct summands of Goldie extending elements in modular lattices
Mathematica Bohemica (2022)
- Volume: 147, Issue: 3, page 359-368
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topShroff, Rupal. "Direct summands of Goldie extending elements in modular lattices." Mathematica Bohemica 147.3 (2022): 359-368. <http://eudml.org/doc/298483>.
@article{Shroff2022,
abstract = {In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \le a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.},
author = {Shroff, Rupal},
journal = {Mathematica Bohemica},
keywords = {modular lattice; direct summand; Goldie extending element},
language = {eng},
number = {3},
pages = {359-368},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Direct summands of Goldie extending elements in modular lattices},
url = {http://eudml.org/doc/298483},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Shroff, Rupal
TI - Direct summands of Goldie extending elements in modular lattices
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 359
EP - 368
AB - In this paper some results on direct summands of Goldie extending elements are studied in a modular lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \le a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some characterizations of decomposition of a Goldie extending element in a modular lattice are obtained.
LA - eng
KW - modular lattice; direct summand; Goldie extending element
UR - http://eudml.org/doc/298483
ER -
References
top- Akalan, E., Birkenmeier, G. F., Tercan, A., 10.1080/00927870802254843, Commun. Algebra 37 (2009), 663-683. (2009) Zbl1214.16005MR2493810DOI10.1080/00927870802254843
- Călugăreanu, G., 10.1007/978-94-015-9588-9, Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). (2000) Zbl0959.06001MR1782739DOI10.1007/978-94-015-9588-9
- Crawley, P., Dilworth, R. P., Algebraic Theory of Lattices, Prentice Hall, Engelwood Cliffs (1973). (1973) Zbl0494.06001
- Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313. Longman Scientific, Harlow (1994). (1994) Zbl0841.16001MR1312366
- Grätzer, G., 10.1007/978-3-0348-7633-9, Birkhäuser, Basel (1998). (1998) Zbl0909.06002MR1670580DOI10.1007/978-3-0348-7633-9
- Grzeszczuk, P., Puczyłowski, E. R., 10.1016/0022-4049(84)90075-6, J. Pure Appl. Algebra 31 (1984), 47-54. (1984) Zbl0528.16010MR0738204DOI10.1016/0022-4049(84)90075-6
- Harmanci, A., Smith, P. F., Finite direct sums of CS-modules, Houston J. Math. 19 (1993), 523-532. (1993) Zbl0802.16006MR1251607
- Nimbhorkar, S. K., Shroff, R. C., 10.1007/s10587-015-0166-5, Czech. Math. J. 65 (2015), 161-178. (2015) Zbl1338.06004MR3336031DOI10.1007/s10587-015-0166-5
- Nimbhorkar, S. K., Shroff, R. C., 10.21136/MB.2016.0049-14, Math. Bohem. 142 (2017), 163-180. (2017) Zbl1424.06028MR3660173DOI10.21136/MB.2016.0049-14
- Tercan, A., Yücel, C. C., 10.1007/978-3-0348-0952-8, Frontiers in Mathematics. Birkhäuser, Basel (2016). (2016) Zbl1368.16002MR3468915DOI10.1007/978-3-0348-0952-8
- Wu, D., Wang, Y., 10.1080/00927872.2011.551902, Commun. Algebra 40 (2012), 2685-2692. (2012) Zbl1253.16004MR2968904DOI10.1080/00927872.2011.551902
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.