Congruences for Wolstenholme primes
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 1, page 237-253
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMeštrović, Romeo. "Congruences for Wolstenholme primes." Czechoslovak Mathematical Journal 65.1 (2015): 237-253. <http://eudml.org/doc/270050>.
@article{Meštrović2015,
abstract = {A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence $\{2p-1\atopwithdelims ()p-1\} \equiv 1 \hspace\{4.44443pt\}(\@mod \; p^4)$. For such a prime $p$, we establish an expression for $\{2p-1\atopwithdelims ()p-1\}\hspace\{4.44443pt\}(\@mod \; p^8)$ given in terms of the sums $R_i:=\sum _\{k=1\}^\{p-1\}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have \[ \left(\{2p-1\atop p-1\}\right) \equiv 1 -2p \sum \_\{k=1\}^\{p-1\}\frac\{1\}\{k\} -2p^2\sum \_\{k=1\}^\{p-1\}\frac\{1\}\{k^2\}\hspace\{10.0pt\}(\@mod \; p^7). \]
Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.},
author = {Meštrović, Romeo},
journal = {Czechoslovak Mathematical Journal},
keywords = {congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number; congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number},
language = {eng},
number = {1},
pages = {237-253},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruences for Wolstenholme primes},
url = {http://eudml.org/doc/270050},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Meštrović, Romeo
TI - Congruences for Wolstenholme primes
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 1
SP - 237
EP - 253
AB - A prime $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\atopwithdelims ()p-1} \equiv 1 \hspace{4.44443pt}(\@mod \; p^4)$. For such a prime $p$, we establish an expression for ${2p-1\atopwithdelims ()p-1}\hspace{4.44443pt}(\@mod \; p^8)$ given in terms of the sums $R_i:=\sum _{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime $p$ we have \[ \left({2p-1\atop p-1}\right) \equiv 1 -2p \sum _{k=1}^{p-1}\frac{1}{k} -2p^2\sum _{k=1}^{p-1}\frac{1}{k^2}\hspace{10.0pt}(\@mod \; p^7). \]
Moreover, using a recent result of the author, we prove that a prime $p$ satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique of Helou and Terjanian, the above congruence is given as an expression involving the Bernoulli numbers.
LA - eng
KW - congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number; congruence; prime power; Wolstenholme prime; Wolstenholme's theorem; Bernoulli number
UR - http://eudml.org/doc/270050
ER -
References
top- Bayat, M., 10.2307/2975083, Am. Math. Mon. 104 (1997), 557-560. (1997) Zbl0916.11002MR1453658DOI10.2307/2975083
- Crandall, R., Dilcher, K., Pomerance, C., 10.1090/S0025-5718-97-00791-6, Math. Comput. 66 (1997), 433-449. (1997) Zbl0854.11002MR1372002DOI10.1090/S0025-5718-97-00791-6
- Dilcher, K., Skula, L., A new criterion for the first case of Fermat's last theorem, Math. Comp. 64 (1995), 363-392. (1995) Zbl0817.11022MR1248969
- Dilcher, K., Skula, L., Slavutsky, I. Sh., Bernoulli Numbers. Bibliography (1713-1990), Queen's papers in Pure and Applied Mathematics 87 Queen's University, Kingston (1991), updated on-line version: www.mathstat.dal.ca/ {dilcher/bernoulli.html}. (1991) MR1119305
- Glaisher, J. W. L., Congruences relating to the sums of products of the first numbers and to other sums of products, Quart. J. 31 (1900), 1-35. (1900)
- Glaisher, J. W. L., On the residues of the sums of products of the first numbers, and their powers, to modulus or , Quart. J. 31 (1900), 321-353. (1900)
- Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, J. Borwein, et al. Organic Mathematics Proc. of the workshop. Burnaby, 1995. CMS Conf. Proc. 20, American Mathematical Society, Providence (1997), 253-276. (1997) Zbl0903.11005MR1483922
- Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press Oxford (1979). (1979) Zbl0423.10001MR0568909
- Helou, C., Terjanian, G., 10.1016/j.jnt.2007.06.008, J. Number Theory 128 (2008), 475-499. (2008) Zbl1236.11003MR2389852DOI10.1016/j.jnt.2007.06.008
- Ireland, K., Rosen, M., A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics 84 Springer, New York (1982). (1982) Zbl0482.10001MR0661047
- Jacobson, N., Basic Algebra. I, W. H. Freeman and Company New York (1985). (1985) Zbl0557.16001MR0780184
- Jakubec, S., Note on the congruences , , , Acta Math. Inform. Univ. Ostrav. 6 (1998), 115-120. (1998) Zbl1024.11002MR1822520
- Jakubec, S., 10.1007/BF02942562, Abh. Math. Semin. Univ. Hamb. 68 (1998), 193-197. (1998) Zbl0954.11009MR1658393DOI10.1007/BF02942562
- Kummer, E. E., Über eine allgemeine Eigenschaft der rationalen Entwicklungscoëfficienten einer bestimmten Gattung analytischer Functionen, J. Reine Angew. Math. 41 (1851), 368-372 German. (1851)
- Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. (2) 39 (1938), 350-360. (1938) Zbl0019.00505MR1503412
- McIntosh, R. J., 10.4064/aa-71-4-381-389, Acta Arith. 71 (1995), 381-389. (1995) Zbl0829.11003MR1339137DOI10.4064/aa-71-4-381-389
- McIntosh, R. J., Roettger, E. L., 10.1090/S0025-5718-07-01955-2, Math. Comput. 76 (2007), 2087-2094. (2007) Zbl1139.11003MR2336284DOI10.1090/S0025-5718-07-01955-2
- Meštrović, R., On the mod determination of , Rocky Mt. J. Math. 44 (2014), 633-648; preprint arXiv:1108.1174v1 [math.NT] (2011) . (2014) MR3240517
- Meštrović, R., Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862-2012), preprint arXiv:1111.3057v2 [math.NT] (2011). (2011)
- Meštrović, R., 10.13164/ma.2013.04, Math. Appl., Brno 2 (2013), 35-42. (2013) MR3275598DOI10.13164/ma.2013.04
- Ribenboim, P., 13 Lectures on Fermat's Last Theorem, Springer New York (1979). (1979) Zbl0456.10006MR0551363
- Skula, L., Fermat's last theorem and the Fermat quotients, Comment. Math. Univ. St. Pauli 41 (1992), 35-54. (1992) Zbl0753.11016MR1166223
- Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39. (1862)
- Zhao, J., 10.1142/S1793042108001146, Int. J. Number Theory 4 (2008), 73-106. (2008) Zbl1218.11005MR2387917DOI10.1142/S1793042108001146
- Zhao, J., 10.1016/j.jnt.2006.05.005, J. Number Theory 123 (2007), 18-26. (2007) MR2295427DOI10.1016/j.jnt.2006.05.005
- Zhou, X., Cai, T., 10.1090/S0002-9939-06-08777-6, Proc. Am. Math. Soc. 135 (2007), 1329-1333. (2007) Zbl1115.11006MR2276641DOI10.1090/S0002-9939-06-08777-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.