Displaying similar documents to “Congruences for Wolstenholme primes”

On sums of binomial coefficients modulo p²

Zhi-Wei Sun (2012)

Colloquium Mathematicae

Similarity:

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

On the quartic character of quadratic units

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and...

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo, Chuanan Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

On a linear homogeneous congruence

A. Schinzel, M. Zakarczemny (2006)

Colloquium Mathematicae

Similarity:

The number of solutions of the congruence a x + + a k x k 0 ( m o d n ) in the box 0 x i b i is estimated from below in the best possible way, provided for all i,j either ( a i , n ) | ( a j , n ) or ( a j , n ) | ( a i , n ) or n | [ a i , a j ] .

A basis of Zₘ

Min Tang, Yong-Gao Chen (2006)

Colloquium Mathematicae

Similarity:

Let σ A ( n ) = | ( a , a ' ) A ² : a + a ' = n | , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, σ A ( n ) is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which σ A ( n ) is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and σ A ( n ̅ ) 768 for all n̅ ∈ Zₘ.

A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri (2021)

Mathematica Bohemica

Similarity:

Consider the linear congruence equation x 1 + ... + x k b ( mod n s ) for b , n , s . Let ( a , b ) s denote the generalized gcd of a and b which is the largest l s with l dividing a and b simultaneously. Let d 1 , ... , d τ ( n ) be all positive divisors of n . For each d j n , define 𝒞 j , s ( n ) = { 1 x n s : ( x , n s ) s = d j s } . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on x i . We generalize their result with generalized gcd restrictions on x i and prove that for the above linear congruence, the...

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

Similarity:

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve...

Bigraphic pairs with a realization containing a split bipartite-graph

Jian Hua Yin, Jia-Yun Li, Jin-Zhi Du, Hai-Yan Li (2019)

Czechoslovak Mathematical Journal

Similarity:

Let K s , t be the complete bipartite graph with partite sets { x 1 , ... , x s } and { y 1 , ... , y t } . A split bipartite-graph on ( s + s ' ) + ( t + t ' ) vertices, denoted by SB s + s ' , t + t ' , is the graph obtained from K s , t by adding s ' + t ' new vertices x s + 1 , ... , x s + s ' , y t + 1 , ... , y t + t ' such that each of x s + 1 , ... , x s + s ' is adjacent to each of y 1 , ... , y t and each of y t + 1 , ... , y t + t ' is adjacent to each of x 1 , ... , x s . Let A and B be nonincreasing lists of nonnegative integers, having lengths m and n , respectively. The pair ( A ; B ) is potentially SB s + s ' , t + t ' -bigraphic if there is a simple bipartite graph containing SB s + s ' , t + t ' (with s + s ' vertices x 1 , ... , x s + s ' in the part of size m ...

On the gaps between q -binomial coefficients

Florian Luca, Sylvester Manganye (2021)

Communications in Mathematics

Similarity:

In this note, we estimate the distance between two q -nomial coefficients n k q - n ' k ' q , where ( n , k ) ( n ' , k ' ) and q 2 is an integer.

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

On the least almost-prime in arithmetic progression

Jinjiang Li, Min Zhang, Yingchun Cai (2023)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 r denote an almost-prime with at most r prime factors, counted according to multiplicity. Suppose that a and q are positive integers satisfying ( a , q ) = 1 . Denote by 𝒫 2 ( a , q ) the least almost-prime 𝒫 2 which satisfies 𝒫 2 a ( mod q ) . It is proved that for sufficiently large q , there holds 𝒫 2 ( a , q ) q 1 . 8345 . This result constitutes an improvement upon that of Iwaniec (1982), who obtained the same conclusion, but for the range 1 . 845 in place of 1 . 8345 .

Existence of solutions for a coupled system with φ -Laplacian operators and nonlinear coupled boundary conditions

Konan Charles Etienne Goli, Assohoun Adjé (2017)

Communications in Mathematics

Similarity:

We study the existence of solutions of the system ( φ 1 ( u 1 ' ( t ) ) ) ' = f 1 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , ( φ 2 ( u 2 ' ( t ) ) ) ' = f 2 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , submitted to nonlinear coupled boundary conditions on [ 0 , T ] where φ 1 , φ 2 : ( - a , a ) , with 0 < a < + , are two increasing homeomorphisms such that φ 1 ( 0 ) = φ 2 ( 0 ) = 0 , and f i : [ 0 , T ] × 4 , i { 1 , 2 } are two L 1 -Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....