Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium
Rogério Martins; Gonçalo Morais
Kybernetika (2015)
- Volume: 51, Issue: 2, page 347-373
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMartins, Rogério, and Morais, Gonçalo. "Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium." Kybernetika 51.2 (2015): 347-373. <http://eudml.org/doc/270084>.
@article{Martins2015,
abstract = {An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study.},
author = {Martins, Rogério, Morais, Gonçalo},
journal = {Kybernetika},
keywords = {coupled oscillators; synchronization; invariant manifolds; coupled oscillators; synchronization; invariant manifolds},
language = {eng},
number = {2},
pages = {347-373},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium},
url = {http://eudml.org/doc/270084},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Martins, Rogério
AU - Morais, Gonçalo
TI - Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 2
SP - 347
EP - 373
AB - An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study.
LA - eng
KW - coupled oscillators; synchronization; invariant manifolds; coupled oscillators; synchronization; invariant manifolds
UR - http://eudml.org/doc/270084
ER -
References
top- Hartshorne, R., 10.1007/978-1-4757-3849-0, Graduate Texts in Mathematics, Springer, 1977. Zbl1306.00013MR0463157DOI10.1007/978-1-4757-3849-0
- Hatcher, A., 10.1017/s0013091503214620, Cambridge University Press, 2002. Zbl1044.55001MR1867354DOI10.1017/s0013091503214620
- Horn, R., Johnson, C., 10.1017/cbo9780511840371, Cambridge University Press, 1990. Zbl0801.15001MR1288752DOI10.1017/cbo9780511840371
- Katriel, G., 10.1016/j.physd.2008.04.015, Physica D 237 (2008), 2933-2944. Zbl1184.34060MR2514073DOI10.1016/j.physd.2008.04.015
- Margheri, A., Martins, R., 10.1016/j.jde.2010.09.005, J. Differential Equations 249 (2010), 3215-3232. MR2737427DOI10.1016/j.jde.2010.09.005
- Morais, G., Dinâmica de Osciladores Acoplados., PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013.
- Pantaleone, J., 10.1119/1.1501118, Am. J. Phys. 70 (2002), 992-1000. DOI10.1119/1.1501118
- Smith, R. A., 10.1112/plms/s3-48.2.341, Proc. London Math. Soc. s3-48 (1984), 2, 341-362. Zbl0509.34046MR0729074DOI10.1112/plms/s3-48.2.341
- Smith, R. A., 10.1016/0022-247x(86)90189-7, J. Math. Anal. Appl 120 (1986), 679-708. Zbl0603.34033MR0864784DOI10.1016/0022-247x(86)90189-7
- Wazewski, T., Sur un principle topologique de l'examen de l'allure asymptotique des integrales des Equations differentielles ordinaires., Ann. Soc. Polon Math. 20 (1947), 279-313. MR0026206
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.