On a high-order iterative scheme for a nonlinear Love equation
Le Thi Phuong Ngoc; Nguyen Tuan Duy; Nguyen Thanh Long
Applications of Mathematics (2015)
- Volume: 60, Issue: 3, page 285-298
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNgoc, Le Thi Phuong, Duy, Nguyen Tuan, and Long, Nguyen Thanh. "On a high-order iterative scheme for a nonlinear Love equation." Applications of Mathematics 60.3 (2015): 285-298. <http://eudml.org/doc/270085>.
@article{Ngoc2015,
abstract = {In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order $N \ge 2$ to a local unique weak solution of the above mentioned equation.},
author = {Ngoc, Le Thi Phuong, Duy, Nguyen Tuan, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$; nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$},
language = {eng},
number = {3},
pages = {285-298},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a high-order iterative scheme for a nonlinear Love equation},
url = {http://eudml.org/doc/270085},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Ngoc, Le Thi Phuong
AU - Duy, Nguyen Tuan
AU - Long, Nguyen Thanh
TI - On a high-order iterative scheme for a nonlinear Love equation
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 285
EP - 298
AB - In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order $N \ge 2$ to a local unique weak solution of the above mentioned equation.
LA - eng
KW - nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$; nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$
UR - http://eudml.org/doc/270085
ER -
References
top- Albert, J., 10.1016/0022-247X(89)90195-9, J. Math. Anal. Appl. 141 (1989), 527-537. (1989) Zbl0697.35116MR1009061DOI10.1016/0022-247X(89)90195-9
- Amick, C. J., Bona, J. L., Schonbek, M. E., 10.1016/0022-0396(89)90176-9, J. Differ. Equations 81 (1989), 1-49. (1989) Zbl0689.35081MR1012198DOI10.1016/0022-0396(89)90176-9
- Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A., Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces, Internat. J. Engrg., Sci. Technol. 1 (2009), 228-244. (2009)
- Clarkson, P. A., 10.1088/0305-4470/22/18/020, J. Phys. A, Math. Gen. 22 (1989), 3821-3848. (1989) Zbl0711.35113MR1015235DOI10.1088/0305-4470/22/18/020
- Deimling, K., Nonlinear Functional Analysis, Springer Berlin (1985). (1985) Zbl0559.47040MR0787404
- Dutta, S., 10.1007/BF00875578, Pure Applied Geophys. 98 (1972), 35-39. (1972) DOI10.1007/BF00875578
- Lakshmikantham, V., Leela, S., Differential and Integral Inequalities. Theory and Applications. Vol. I: Ordinary Differential Equations, Mathematics in Science and Engineering. Vol. 55 Academic Press, New York (1969). (1969) Zbl0177.12403MR0379933
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, French Etudes mathematiques Dunod; Gauthier-Villars, Paris (1969). (1969) MR0259693
- Makhankov, V. G., 10.1016/0370-1573(78)90074-1, Phys. Rep. 35 (1978), 1-128. (1978) MR0481361DOI10.1016/0370-1573(78)90074-1
- Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s40306-013-0034-z, Acta Math. Vietnam. 38 (2013), 551-562. (2013) Zbl1310.35174MR3129917DOI10.1007/s40306-013-0034-z
- Ngoc, L. T. P., Duy, N. T., Long, N. T., Existence and properties of solutions of a boundary problem for a Love's equation, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. (2014) Zbl1304.35231MR3295564
- Ngoc, L. T. P., Long, N. T., A high order iterative scheme for a nonlinear Kirchhoff wave equation in the unit membrane, Int. J. Differ. Equ. 2011 (2011), Article ID 679528, 31 pages. (2011) Zbl1242.35014MR2854955
- Ngoc, L. T. P., Truong, L. X., Long, N. T., An -order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions, Acta Math. Vietnam. 35 (2010), 207-227. (2010) Zbl1233.35134MR2731324
- Ogino, T., Takeda, S., 10.1143/JPSJ.41.257, J. Phys. Soc. Jpn. 41 (1976), 257-264. (1976) DOI10.1143/JPSJ.41.257
- Parida, P. K., Gupta, D. K., 10.1016/j.cam.2006.08.027, J. Comput. Appl. Math. 206 (2007), 873-887. (2007) Zbl1119.47063MR2333719DOI10.1016/j.cam.2006.08.027
- Paul, M. K., 10.1007/BF00880505, Pure Applied Geophys. 59 (1964), 33-37. (1964) Zbl0135.23902DOI10.1007/BF00880505
- Radochová, V., Remark to the comparison of solution properties of Love's equation with those of wave equation, Apl. Mat. 23 (1978), 199-207. (1978) MR0492985
- Seyler, C. E., Fenstermacher, D. L., 10.1063/1.864487, Phys. Fluids 27 (1984), 4-7. (1984) Zbl0544.76170DOI10.1063/1.864487
- Truong, L. X., Ngoc, L. T. P., Long, N. T., 10.1016/j.na.2008.10.086, Nonlinear Anal., Theory Mathods Appl., Ser. A, Theory Methods 71 (2009), 467-484. (2009) Zbl1173.35603MR2518053DOI10.1016/j.na.2008.10.086
- Truong, L. X., Ngoc, L. T. P., Long, N. T., 10.1016/j.amc.2009.07.056, Appl. Math. Comput. 215 (2009), 1908-1925. (2009) Zbl1191.65122MR2557432DOI10.1016/j.amc.2009.07.056
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.