On a high-order iterative scheme for a nonlinear Love equation

Le Thi Phuong Ngoc; Nguyen Tuan Duy; Nguyen Thanh Long

Applications of Mathematics (2015)

  • Volume: 60, Issue: 3, page 285-298
  • ISSN: 0862-7940

Abstract

top
In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order N 2 to a local unique weak solution of the above mentioned equation.

How to cite

top

Ngoc, Le Thi Phuong, Duy, Nguyen Tuan, and Long, Nguyen Thanh. "On a high-order iterative scheme for a nonlinear Love equation." Applications of Mathematics 60.3 (2015): 285-298. <http://eudml.org/doc/270085>.

@article{Ngoc2015,
abstract = {In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order $N \ge 2$ to a local unique weak solution of the above mentioned equation.},
author = {Ngoc, Le Thi Phuong, Duy, Nguyen Tuan, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$; nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$},
language = {eng},
number = {3},
pages = {285-298},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a high-order iterative scheme for a nonlinear Love equation},
url = {http://eudml.org/doc/270085},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Ngoc, Le Thi Phuong
AU - Duy, Nguyen Tuan
AU - Long, Nguyen Thanh
TI - On a high-order iterative scheme for a nonlinear Love equation
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 285
EP - 298
AB - In this paper, a high-order iterative scheme is established for a nonlinear Love equation associated with homogeneous Dirichlet boundary conditions. This is a development based on recent results (L. T. P. Ngoc, N. T. Long (2011); L. X. Truong, L. T. P. Ngoc, N. T. Long (2009)) to get a convergent sequence at a rate of order $N \ge 2$ to a local unique weak solution of the above mentioned equation.
LA - eng
KW - nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$; nonlinear Love equation; Faedo-Galerkin method; convergence of order $N$
UR - http://eudml.org/doc/270085
ER -

References

top
  1. Albert, J., 10.1016/0022-247X(89)90195-9, J. Math. Anal. Appl. 141 (1989), 527-537. (1989) Zbl0697.35116MR1009061DOI10.1016/0022-247X(89)90195-9
  2. Amick, C. J., Bona, J. L., Schonbek, M. E., 10.1016/0022-0396(89)90176-9, J. Differ. Equations 81 (1989), 1-49. (1989) Zbl0689.35081MR1012198DOI10.1016/0022-0396(89)90176-9
  3. Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A., Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces, Internat. J. Engrg., Sci. Technol. 1 (2009), 228-244. (2009) 
  4. Clarkson, P. A., 10.1088/0305-4470/22/18/020, J. Phys. A, Math. Gen. 22 (1989), 3821-3848. (1989) Zbl0711.35113MR1015235DOI10.1088/0305-4470/22/18/020
  5. Deimling, K., Nonlinear Functional Analysis, Springer Berlin (1985). (1985) Zbl0559.47040MR0787404
  6. Dutta, S., 10.1007/BF00875578, Pure Applied Geophys. 98 (1972), 35-39. (1972) DOI10.1007/BF00875578
  7. Lakshmikantham, V., Leela, S., Differential and Integral Inequalities. Theory and Applications. Vol. I: Ordinary Differential Equations, Mathematics in Science and Engineering. Vol. 55 Academic Press, New York (1969). (1969) Zbl0177.12403MR0379933
  8. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, French Etudes mathematiques Dunod; Gauthier-Villars, Paris (1969). (1969) MR0259693
  9. Makhankov, V. G., 10.1016/0370-1573(78)90074-1, Phys. Rep. 35 (1978), 1-128. (1978) MR0481361DOI10.1016/0370-1573(78)90074-1
  10. Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s40306-013-0034-z, Acta Math. Vietnam. 38 (2013), 551-562. (2013) Zbl1310.35174MR3129917DOI10.1007/s40306-013-0034-z
  11. Ngoc, L. T. P., Duy, N. T., Long, N. T., Existence and properties of solutions of a boundary problem for a Love's equation, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. (2014) Zbl1304.35231MR3295564
  12. Ngoc, L. T. P., Long, N. T., A high order iterative scheme for a nonlinear Kirchhoff wave equation in the unit membrane, Int. J. Differ. Equ. 2011 (2011), Article ID 679528, 31 pages. (2011) Zbl1242.35014MR2854955
  13. Ngoc, L. T. P., Truong, L. X., Long, N. T., An N -order iterative scheme for a nonlinear Kirchhoff-Carrier wave equation associated with mixed homogeneous conditions, Acta Math. Vietnam. 35 (2010), 207-227. (2010) Zbl1233.35134MR2731324
  14. Ogino, T., Takeda, S., 10.1143/JPSJ.41.257, J. Phys. Soc. Jpn. 41 (1976), 257-264. (1976) DOI10.1143/JPSJ.41.257
  15. Parida, P. K., Gupta, D. K., 10.1016/j.cam.2006.08.027, J. Comput. Appl. Math. 206 (2007), 873-887. (2007) Zbl1119.47063MR2333719DOI10.1016/j.cam.2006.08.027
  16. Paul, M. K., 10.1007/BF00880505, Pure Applied Geophys. 59 (1964), 33-37. (1964) Zbl0135.23902DOI10.1007/BF00880505
  17. Radochová, V., Remark to the comparison of solution properties of Love's equation with those of wave equation, Apl. Mat. 23 (1978), 199-207. (1978) MR0492985
  18. Seyler, C. E., Fenstermacher, D. L., 10.1063/1.864487, Phys. Fluids 27 (1984), 4-7. (1984) Zbl0544.76170DOI10.1063/1.864487
  19. Truong, L. X., Ngoc, L. T. P., Long, N. T., 10.1016/j.na.2008.10.086, Nonlinear Anal., Theory Mathods Appl., Ser. A, Theory Methods 71 (2009), 467-484. (2009) Zbl1173.35603MR2518053DOI10.1016/j.na.2008.10.086
  20. Truong, L. X., Ngoc, L. T. P., Long, N. T., 10.1016/j.amc.2009.07.056, Appl. Math. Comput. 215 (2009), 1908-1925. (2009) Zbl1191.65122MR2557432DOI10.1016/j.amc.2009.07.056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.