Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions
Le Thi Phuong Ngoc; Nguyen Thanh Long
Applications of Mathematics (2016)
- Volume: 61, Issue: 2, page 165-196
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNgoc, Le Thi Phuong, and Long, Nguyen Thanh. "Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions." Applications of Mathematics 61.2 (2016): 165-196. <http://eudml.org/doc/276793>.
@article{Ngoc2016,
abstract = {In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before.},
author = {Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay; nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay},
language = {eng},
number = {2},
pages = {165-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions},
url = {http://eudml.org/doc/276793},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 165
EP - 196
AB - In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before.
LA - eng
KW - nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay; nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay
UR - http://eudml.org/doc/276793
ER -
References
top- Albert, J., 10.1016/0022-247X(89)90195-9, J. Math. Anal. Appl. 141 (1989), 527-537. (1989) Zbl0697.35116MR1009061DOI10.1016/0022-247X(89)90195-9
- Amick, C. J., Bona, J. L., Schonbek, M. E., 10.1016/0022-0396(89)90176-9, J. Differ. Equations 81 (1989), 1-49. (1989) Zbl0689.35081MR1012198DOI10.1016/0022-0396(89)90176-9
- Benaissa, A., Messaoudi, S. A., 10.1007/s00030-005-0008-5, NoDEA, Nonlinear Differ. Equ. Appl. 12 (2005), 391-399. (2005) Zbl1102.35071MR2199380DOI10.1007/s00030-005-0008-5
- Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A., Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces, International Journal of Engineering, Science and Technology 1 (2009), 228-244. (2009) MR2380170
- Clarkson, P. A., 10.1088/0305-4470/22/18/020, J. Phys. A, Math. Gen. 22 (1989), 3821-3848. (1989) Zbl0711.35113MR1015235DOI10.1088/0305-4470/22/18/020
- Dutta, S., 10.1007/BF00875578, Pure Appl. Geophys. 98 (1972), 35-39. (1972) DOI10.1007/BF00875578
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris (1969), French. (1969) MR0259693
- Long, N. T., Ngoc, L. T. P., 10.1016/j.jmaa.2011.07.034, J. Math. Anal. Appl. 385 (2012), 1070-1093. (2012) Zbl1228.35151MR2834912DOI10.1016/j.jmaa.2011.07.034
- Makhankov, V. G., 10.1016/0370-1573(78)90074-1, Phys. Rep. 35 (1978), 1-128. (1978) MR0481361DOI10.1016/0370-1573(78)90074-1
- Messaoudi, S. A., 10.1002/mana.200310104, Math. Nachr. 260 (2003), 58-66. (2003) Zbl1035.35082MR2017703DOI10.1002/mana.200310104
- Nakao, M., Ono, K., Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkc. Ekvacioj, Ser. Int. 38 (1995), 417-431. (1995) Zbl0855.35081MR1374429
- Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s40306-013-0034-z, Acta Math. Vietnam. 38 (2013), 551-562. (2013) Zbl1310.35174MR3129917DOI10.1007/s40306-013-0034-z
- Ngoc, L. T. P., Duy, N. T., Long, N. T., Existence and properties of solutions of a boundary problem for a Love's equation, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. (2014) Zbl1304.35231MR3295564
- Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s10492-015-0096-4, Appl. Math., Praha 60 (2015), 285-298. (2015) Zbl1363.65180MR3419963DOI10.1007/s10492-015-0096-4
- Ngoc, L. T. P., Long, N. T., 10.3934/cpaa.2013.12.2001, Commun. Pure Appl. Anal. 12 (2013), 2001-2029. (2013) Zbl1267.35119MR3015668DOI10.3934/cpaa.2013.12.2001
- Ogino, T., Takeda, S., 10.1143/JPSJ.41.257, J. Phys. Soc. Japan 41 (1976), 257-264. (1976) DOI10.1143/JPSJ.41.257
- Paul, M. K., 10.1007/BF00880505, Pure Appl. Geophys. 59 (1964), 33-37. (1964) Zbl0135.23902DOI10.1007/BF00880505
- Radochová, V., Remark to the comparison of solution properties of Love's equation with those of wave equation, Apl. Mat. 23 (1978), 199-207. (1978) MR0492985
- Seyler, C. E., Fenstermacher, D. L., 10.1063/1.864487, Phys. Fluids 27 (1984), 4-7. (1984) Zbl0544.76170DOI10.1063/1.864487
- Truong, L. X., Ngoc, L. T. P., Dinh, A. P. N., Long, N. T., 10.1016/j.na.2011.07.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6933-6949. (2011) Zbl1227.35075MR2833683DOI10.1016/j.na.2011.07.015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.