Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions

Le Thi Phuong Ngoc; Nguyen Thanh Long

Applications of Mathematics (2016)

  • Volume: 61, Issue: 2, page 165-196
  • ISSN: 0862-7940

Abstract

top
In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before.

How to cite

top

Ngoc, Le Thi Phuong, and Long, Nguyen Thanh. "Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions." Applications of Mathematics 61.2 (2016): 165-196. <http://eudml.org/doc/276793>.

@article{Ngoc2016,
abstract = {In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before.},
author = {Ngoc, Le Thi Phuong, Long, Nguyen Thanh},
journal = {Applications of Mathematics},
keywords = {nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay; nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay},
language = {eng},
number = {2},
pages = {165-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions},
url = {http://eudml.org/doc/276793},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Ngoc, Le Thi Phuong
AU - Long, Nguyen Thanh
TI - Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 165
EP - 196
AB - In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before.
LA - eng
KW - nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay; nonlinear Love equation; Faedo-Galerkin method; local existence; blow up; exponential decay
UR - http://eudml.org/doc/276793
ER -

References

top
  1. Albert, J., 10.1016/0022-247X(89)90195-9, J. Math. Anal. Appl. 141 (1989), 527-537. (1989) Zbl0697.35116MR1009061DOI10.1016/0022-247X(89)90195-9
  2. Amick, C. J., Bona, J. L., Schonbek, M. E., 10.1016/0022-0396(89)90176-9, J. Differ. Equations 81 (1989), 1-49. (1989) Zbl0689.35081MR1012198DOI10.1016/0022-0396(89)90176-9
  3. Benaissa, A., Messaoudi, S. A., 10.1007/s00030-005-0008-5, NoDEA, Nonlinear Differ. Equ. Appl. 12 (2005), 391-399. (2005) Zbl1102.35071MR2199380DOI10.1007/s00030-005-0008-5
  4. Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A., Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces, International Journal of Engineering, Science and Technology 1 (2009), 228-244. (2009) MR2380170
  5. Clarkson, P. A., 10.1088/0305-4470/22/18/020, J. Phys. A, Math. Gen. 22 (1989), 3821-3848. (1989) Zbl0711.35113MR1015235DOI10.1088/0305-4470/22/18/020
  6. Dutta, S., 10.1007/BF00875578, Pure Appl. Geophys. 98 (1972), 35-39. (1972) DOI10.1007/BF00875578
  7. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod; Gauthier-Villars, Paris (1969), French. (1969) MR0259693
  8. Long, N. T., Ngoc, L. T. P., 10.1016/j.jmaa.2011.07.034, J. Math. Anal. Appl. 385 (2012), 1070-1093. (2012) Zbl1228.35151MR2834912DOI10.1016/j.jmaa.2011.07.034
  9. Makhankov, V. G., 10.1016/0370-1573(78)90074-1, Phys. Rep. 35 (1978), 1-128. (1978) MR0481361DOI10.1016/0370-1573(78)90074-1
  10. Messaoudi, S. A., 10.1002/mana.200310104, Math. Nachr. 260 (2003), 58-66. (2003) Zbl1035.35082MR2017703DOI10.1002/mana.200310104
  11. Nakao, M., Ono, K., Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation, Funkc. Ekvacioj, Ser. Int. 38 (1995), 417-431. (1995) Zbl0855.35081MR1374429
  12. Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s40306-013-0034-z, Acta Math. Vietnam. 38 (2013), 551-562. (2013) Zbl1310.35174MR3129917DOI10.1007/s40306-013-0034-z
  13. Ngoc, L. T. P., Duy, N. T., Long, N. T., Existence and properties of solutions of a boundary problem for a Love's equation, Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. (2014) Zbl1304.35231MR3295564
  14. Ngoc, L. T. P., Duy, N. T., Long, N. T., 10.1007/s10492-015-0096-4, Appl. Math., Praha 60 (2015), 285-298. (2015) Zbl1363.65180MR3419963DOI10.1007/s10492-015-0096-4
  15. Ngoc, L. T. P., Long, N. T., 10.3934/cpaa.2013.12.2001, Commun. Pure Appl. Anal. 12 (2013), 2001-2029. (2013) Zbl1267.35119MR3015668DOI10.3934/cpaa.2013.12.2001
  16. Ogino, T., Takeda, S., 10.1143/JPSJ.41.257, J. Phys. Soc. Japan 41 (1976), 257-264. (1976) DOI10.1143/JPSJ.41.257
  17. Paul, M. K., 10.1007/BF00880505, Pure Appl. Geophys. 59 (1964), 33-37. (1964) Zbl0135.23902DOI10.1007/BF00880505
  18. Radochová, V., Remark to the comparison of solution properties of Love's equation with those of wave equation, Apl. Mat. 23 (1978), 199-207. (1978) MR0492985
  19. Seyler, C. E., Fenstermacher, D. L., 10.1063/1.864487, Phys. Fluids 27 (1984), 4-7. (1984) Zbl0544.76170DOI10.1063/1.864487
  20. Truong, L. X., Ngoc, L. T. P., Dinh, A. P. N., Long, N. T., 10.1016/j.na.2011.07.015, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6933-6949. (2011) Zbl1227.35075MR2833683DOI10.1016/j.na.2011.07.015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.