Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 399-426
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTytgat, Romaric. "Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids." Czechoslovak Mathematical Journal 65.2 (2015): 399-426. <http://eudml.org/doc/270088>.
@article{Tytgat2015,
abstract = {Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes $\bar\{f\}$ tels que l’opérateur de Hankel $\smash\{H_\{\bar\{f\}\}\}$ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten $\mathcal \{S\}^\{p\}$ quand $p$ tend vers $1$ et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract. In this paper, we give theoretical results on Macaev ideal and Dixmier trace. Then we give a characterization of antiholomorphic symbols $\bar\{f\}$ such that the Hankel operator $\smash\{H_\{\bar\{f\}\}\}$ on a Bergman weighted space is in an ideal of Macaev and we give the Dixmier trace. For this, we look at the behavior of Schatten’s norms $\mathcal \{S\}^\{p\}$ when $p$ tends to $1$, using results of Engliš and Rochberg on Bergman space. We also give results on powers of such operators.},
author = {Tytgat, Romaric},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hankel operator; Dixmier trace; Bergman space},
language = {eng},
number = {2},
pages = {399-426},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids},
url = {http://eudml.org/doc/270088},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Tytgat, Romaric
TI - Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 399
EP - 426
AB - Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes $\bar{f}$ tels que l’opérateur de Hankel $\smash{H_{\bar{f}}}$ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten $\mathcal {S}^{p}$ quand $p$ tend vers $1$ et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract. In this paper, we give theoretical results on Macaev ideal and Dixmier trace. Then we give a characterization of antiholomorphic symbols $\bar{f}$ such that the Hankel operator $\smash{H_{\bar{f}}}$ on a Bergman weighted space is in an ideal of Macaev and we give the Dixmier trace. For this, we look at the behavior of Schatten’s norms $\mathcal {S}^{p}$ when $p$ tends to $1$, using results of Engliš and Rochberg on Bergman space. We also give results on powers of such operators.
LA - eng
KW - Hankel operator; Dixmier trace; Bergman space
UR - http://eudml.org/doc/270088
ER -
References
top- Arazy, J., Fisher, S. D., Peetre, J., 10.2307/2374685, Am. J. Math. 110 (1988), 989-1053. (1988) Zbl0669.47017MR0970119DOI10.2307/2374685
- Arazy, J., Fisher, S. D., Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110-145. (1985) Zbl0566.30042MR0814017
- Axler, S., The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. (1986) Zbl0633.47014MR0850538
- Connes, A., Noncommutative Geometry, Academic Press San Diego (1994). (1994) Zbl0818.46076MR1303779
- Connes, A., Moscovici, H., 10.1007/BF01895667, Geom. Funct. Anal. 5 (1995), 174-243. (1995) Zbl0960.46048MR1334867DOI10.1007/BF01895667
- Engliš, M., Guo, K., Zhang, G., 10.1090/S0002-9939-09-09331-9, Proc. Am. Math. Soc. 137 (2009), 3669-3678. (2009) MR2529873DOI10.1090/S0002-9939-09-09331-9
- Engliš, M., Rochberg, R., 10.1016/j.jfa.2009.05.005, J. Funct. Anal. 257 (2009), 1445-1479. (2009) Zbl1185.47027MR2541276DOI10.1016/j.jfa.2009.05.005
- Gohberg, I. C., Kreĭn, M. G., 10.1090/mmono/018/01, Translations of Mathematical Monographs 18 American Mathematical Society, Providence (1969). (1969) Zbl0181.13504MR0246142DOI10.1090/mmono/018/01
- Li, S.-Y., Russo, B., 10.1016/S0764-4442(97)83927-4, C. R. Acad. Sci., Paris, Sér. I, Math. 325 (1997), 21-26. (1997) Zbl0899.47019MR1461391DOI10.1016/S0764-4442(97)83927-4
- Luecking, D. H., 10.1016/0022-1236(92)90034-G, J. Funct. Anal. 110 (1992), 247-271. (1992) Zbl0773.47014MR1194989DOI10.1016/0022-1236(92)90034-G
- Meise, R., Vogt, D., Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics 2 Clarendon Press, Oxford (1997). (1997) Zbl0924.46002MR1483073
- Pavlović, M., Introduction to Function Spaces on the Disk, Posebna Izdanja Matematički Institut SANU, Belgrade (2004). (2004) Zbl1107.30001MR2109650
- Peller, V., Hankel Operators and Their Applications, Springer Monographs in Mathematics Springer, New York (2003). (2003) Zbl1030.47002MR1949210
- Rudin, W., Real an Complex Analysis, McGraw-Hill Series in Higher Mathematics McGraw-Hill Book Company, New York (1966). (1966) MR0210528
- Seip, K., Youssfi, E. H., 10.1007/s12220-011-9241-9, J. Geom. Anal. 23 (2013), 170-201. (2013) Zbl1275.47063MR3010276DOI10.1007/s12220-011-9241-9
- Simon, B., Trace Ideals and Their Applications, London Mathematical Society Lecture Note Series 35 Cambridge University Press, Cambridge (1979). (1979) Zbl0423.47001MR0541149
- Tytgat, R., 10.7900/jot.2012dec19.1987, J. Oper. Theory 72 (2014), 241-256 French. (2014) MR3246989DOI10.7900/jot.2012dec19.1987
- Zhu, K., Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball, New York J. Math. (electronic only) 13 (2007), 299-316. (2007) Zbl1127.47029MR2357717
- Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155
- Zhu, K., 10.1016/0022-247X(91)90091-D, J. Math. Anal. Appl. 157 (1991), 318-336. (1991) Zbl0733.30026MR1112319DOI10.1016/0022-247X(91)90091-D
- Zhu, K., Operator Theory in Function Spaces, Pure and Applied Mathematics 139 Marcel Dekker, New York (1990). (1990) Zbl0706.47019MR1074007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.