The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids”

Schatten class generalized Toeplitz operators on the Bergman space

Chunxu Xu, Tao Yu (2021)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a finite positive measure on the unit disk and let j 1 be an integer. D. Suárez (2015) gave some conditions for a generalized Toeplitz operator T μ ( j ) to be bounded or compact. We first give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < on the Bergman space A 2 , and then give a sufficient condition for T μ ( j ) to be in the Schatten p -class ( 0 < p < 1 ) on A 2 . We also discuss the generalized Toeplitz operators with general bounded symbols. If ϕ L ( D , d A ) and 1 < p < , we define the generalized...

Strict plurisubharmonicity of Bergman kernels on generalized annuli

Yanyan Wang (2014)

Annales Polonici Mathematici

Similarity:

Let A ζ = Ω - ρ ( ζ ) · Ω ¯ be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel K ζ ( z ) of A ζ is plurisubharmonic provided ρ ∈ PSH(U). It is remarkable that A ζ is non-pseudoconvex when the dimension of A ζ is larger than one. For standard annuli in ℂ, we obtain an interesting formula for ² l o g K ζ / ζ ζ ̅ , as well as its boundary behavior.

Complex symmetry of Toeplitz operators on the weighted Bergman spaces

Xiao-He Hu (2022)

Czechoslovak Mathematical Journal

Similarity:

We give a concrete description of complex symmetric monomial Toeplitz operators T z p z ¯ q on the weighted Bergman space A 2 ( Ω ) , where Ω denotes the unit ball or the unit polydisk. We provide a necessary condition for T z p z ¯ q to be complex symmetric. When p , q 2 , we prove that T z p z ¯ q is complex symmetric on A 2 ( Ω ) if and only if p 1 = q 2 and p 2 = q 1 . Moreover, we completely characterize when monomial Toeplitz operators T z p z ¯ q on A 2 ( 𝔻 n ) are J U -symmetric with the n × n symmetric unitary matrix U .

Area differences under analytic maps and operators

Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw (2024)

Czechoslovak Mathematical Journal

Similarity:

Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping h and that of z h , we study various L 2 norms for T ϕ ( h ) , where T ϕ is the Toeplitz operator with symbol ϕ . In Theorem , given polynomials p and q we find a symbol ϕ such that T ϕ ( p ) = q . We extend some of our results to the polydisc.

The generalized Toeplitz operators on the Fock space F α 2

Chunxu Xu, Tao Yu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let μ be a positive Borel measure on the complex plane n and let j = ( j 1 , , j n ) with j i . We study the generalized Toeplitz operators T μ ( j ) on the Fock space F α 2 . We prove that T μ ( j ) is bounded (or compact) on F α 2 if and only if μ is a Fock-Carleson measure (or vanishing Fock-Carleson measure). Furthermore, we give a necessary and sufficient condition for T μ ( j ) to be in the Schatten p -class for 1 p < .

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Similarity:

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Coefficient inequality for a function whose derivative has a positive real part of order α

Deekonda Vamshee Krishna, Thoutreddy Ramreddy (2015)

Mathematica Bohemica

Similarity:

The objective of this paper is to obtain sharp upper bound for the function f for the second Hankel determinant | a 2 a 4 - a 3 2 | , when it belongs to the class of functions whose derivative has a positive real part of order α ( 0 α < 1 ) , denoted by R T ( α ) . Further, an upper bound for the inverse function of f for the nonlinear functional (also called the second Hankel functional), denoted by | t 2 t 4 - t 3 2 | , was determined when it belongs to the same class of functions, using Toeplitz determinants.

A Hankel matrix acting on Hardy and Bergman spaces

Petros Galanopoulos, José Ángel Peláez (2010)

Studia Mathematica

Similarity:

Let μ be a finite positive Borel measure on [0,1). Let μ = ( μ n , k ) n , k 0 be the Hankel matrix with entries μ n , k = [ 0 , 1 ) t n + k d μ ( t ) . The matrix μ induces formally an operator on the space of all analytic functions in the unit disc by the fomula μ ( f ) ( z ) = n = 0 i ( k = 0 μ n , k a k ) z , z ∈ , where f ( z ) = n = 0 a z is an analytic function in . We characterize those positive Borel measures on [0,1) such that μ ( f ) ( z ) = [ 0 , 1 ) f ( t ) / ( 1 - t z ) d μ ( t ) for all f in the Hardy space H¹, and among them we describe those for which μ is bounded and compact on H¹. We also study the analogous problem for the Bergman space A². ...

New characterizations for weighted composition operator from Zygmund type spaces to Bloch type spaces

Xin-Cui Guo, Ze-Hua Zhou (2015)

Czechoslovak Mathematical Journal

Similarity:

Let u be a holomorphic function and ϕ a holomorphic self-map of the open unit disk 𝔻 in the complex plane. We provide new characterizations for the boundedness of the weighted composition operators u C ϕ from Zygmund type spaces to Bloch type spaces in 𝔻 in terms of u , ϕ , their derivatives, and ϕ n , the n -th power of ϕ . Moreover, we obtain some similar estimates for the essential norms of the operators u C ϕ , from which sufficient and necessary conditions of compactness of u C ϕ follows immediately. ...