A formula for the Bloch norm of a -function on the unit ball of
For a -function on the unit ball we define the Bloch norm by where is the invariant derivative of and then show that
For a -function on the unit ball we define the Bloch norm by where is the invariant derivative of and then show that
In the two-parameter setting, we say a function belongs to the mean little BMO if its mean over any interval and with respect to any of the two variables has uniformly bounded mean oscillation. This space has been recently introduced by S. Pott and the present author in relation to the multiplier algebra of the product BMO of Chang-Fefferman. We prove that the Cotlar-Sadosky space of functions of bounded mean oscillation is a strict subspace of the mean little BMO.
Let be the class of tempered distributions. For we denote by the Bessel potential of of order . We prove that if , then for any , , where , . Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order belongs to the space.
Let Ω be a domain of finite type in ℂ² and let f be a function holomorphic in Ω and belonging to . We prove the existence of boundary values for some suitable derivatives of f of order greater than k. The gain of derivatives holds in the complex-tangential direction and it is precisely related to the geometry of ∂Ω. Then we prove a property of non-isotropic Hölder regularity for these boundary values. This generalizes some results given by J. Bruna and J. M. Ortega for the unit ball.
Let be a domain in . For , let . If is a holomorphic and square-integrable function in , then the set of all such that is not square-integrable in is of measure zero. We call this set the exceptional set for . In this note we prove that for every ,and every -subset of the circle ,there exists a holomorphic square-integrable function in the unit ball in such that
In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of , and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators....
Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...
In this paper we obtain some equivalent characterizations of Bloch functions on general bounded strongly pseudoconvex domains with smooth boundary, which extends the known results in [1, 9, 10].
Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes tels que l’opérateur de Hankel sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten quand tend vers et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs. Abstract....
Let and be holomorphic self-maps of the unit disk, and denote by , the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.