Integrable solutions for implicit fractional order functional differential equations with infinite delay

Mouffak Benchohra; Mohammed Said Souid

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 2, page 67-76
  • ISSN: 0044-8753

Abstract

top
In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.

How to cite

top

Benchohra, Mouffak, and Souid, Mohammed Said. "Integrable solutions for implicit fractional order functional differential equations with infinite delay." Archivum Mathematicum 051.2 (2015): 67-76. <http://eudml.org/doc/270100>.

@article{Benchohra2015,
abstract = {In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.},
author = {Benchohra, Mouffak, Souid, Mohammed Said},
journal = {Archivum Mathematicum},
keywords = {implicit fractional-order differential equation; Caputo fractional derivative; integrable solution; existence fixed point; infinite delay},
language = {eng},
number = {2},
pages = {67-76},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Integrable solutions for implicit fractional order functional differential equations with infinite delay},
url = {http://eudml.org/doc/270100},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Benchohra, Mouffak
AU - Souid, Mohammed Said
TI - Integrable solutions for implicit fractional order functional differential equations with infinite delay
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 2
SP - 67
EP - 76
AB - In this paper we study the existence of integrable solutions for initial value problem for implicit fractional order functional differential equations with infinite delay. Our results are based on Schauder type fixed point theorem and the Banach contraction principle fixed point theorem.
LA - eng
KW - implicit fractional-order differential equation; Caputo fractional derivative; integrable solution; existence fixed point; infinite delay
UR - http://eudml.org/doc/270100
ER -

References

top
  1. Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) MR2962045
  2. Abbas, S., Benchohra, M., N’Guérékata, G.M., Avanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. (2015) MR3309582
  3. Agarwal, R.P., Belmekki, M., Benchohra, M., 10.1155/2009/981728, Adv. Differential Equations 2009 (2009), 1–47, ID 981728. (2009) Zbl1182.34103MR2505633DOI10.1155/2009/981728
  4. Agarwal, R.P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (3) (2010), 973–1033. (2010) MR2596185DOI10.1007/s10440-008-9356-6
  5. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus Models and Numerical Methods, World Scientific Publishing, New York, 2012. (2012) Zbl1248.26011MR2894576
  6. Belarbi, A., Benchohra, M., Ouahab, A., 10.1080/00036810601066350, Appl. Anal. 85 (2006), 1459–1470. (2006) Zbl1175.34080MR2282996DOI10.1080/00036810601066350
  7. Benchohra, M., Hamani, S., Ntouyas, S.K., Boundary value problems for differential equations with fractional order, Surveys Math. Appl. 3 (2008), 1–12. (2008) Zbl1157.26301MR2390179
  8. Benchohra, M., Hamani, S., Ntouyas, S.K., Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71 (2009), 2391–2396. (2009) MR2532767
  9. Benchohra, M., Henderson, J., Ntouyas, S.K., Ouahab, A., 10.1016/j.jmaa.2007.06.021, J. Math. Anal. Appl. 338 (2008), 1340–1350. (2008) MR2386501DOI10.1016/j.jmaa.2007.06.021
  10. Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, 1985. (1985) Zbl0559.47040MR0787404
  11. El-Sayed, A.M.A., Abd El-Salam, Sh.A., L p -solution of weighted Cauchy-type problem of a differ-integral functional equation, Intern. J. Nonlinear Sci. 5 (2008), 281–288. (2008) Zbl1230.34006MR2410798
  12. El-Sayed, A.M.M., Hashem, H.H.G., 10.14232/ejqtde.2008.1.25, Electron. J. Qual. Theory Differ. Equ. 25) (2008), 1–10. (2008) Zbl1178.45008MR2443206DOI10.14232/ejqtde.2008.1.25
  13. Hale, J., Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11–41. (1978) Zbl0383.34055MR0492721
  14. Hale, J.K., Lunel, S M.V., Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. (1993) Zbl0787.34002MR1243878
  15. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002MR1890104
  16. Hino, Y., Murakami, S., Naito, T., Functional Differential Equations with Infinite Delay, Springer-Verlag, Berlin, 1991. (1991) Zbl0732.34051MR1122588
  17. Kappel, F., Schappacher, W., 10.1016/0022-0396(80)90093-5, J. Differential Equations 37 (1980), 141–183. (1980) Zbl0466.34036MR0587220DOI10.1016/0022-0396(80)90093-5
  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  19. Lakshmikantham, V., Leela, S., Vasundhara, J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, 2009. (2009) Zbl1188.37002
  20. Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity. An introduction to mathematical models , Imperial College Press, London, 2010. (2010) Zbl1210.26004MR2676137
  21. Ortigueira, M.D., 10.1007/978-94-007-0747-4, Lecture Notes in Electrical Engineering, vol. 84, Springer, Dordrecht, 2011. (2011) Zbl1251.26005MR2768178DOI10.1007/978-94-007-0747-4
  22. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  23. Schumacher, K., Existence and continuous dependence for differential equations with unbounded delay, Arch. Ration. Mech. Anal. 64 (1978), 315–335. (1978) MR0477379
  24. Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010. (2010) MR2796453

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.