Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
Ahmed Zahed; Samira Hamani; John R. Graef
Archivum Mathematicum (2021)
- Volume: 057, Issue: 5, page 285-297
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topZahed, Ahmed, Hamani, Samira, and Graef, John R.. "Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions." Archivum Mathematicum 057.5 (2021): 285-297. <http://eudml.org/doc/298285>.
@article{Zahed2021,
abstract = {In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.},
author = {Zahed, Ahmed, Hamani, Samira, Graef, John R.},
journal = {Archivum Mathematicum},
keywords = {existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases},
language = {eng},
number = {5},
pages = {285-297},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions},
url = {http://eudml.org/doc/298285},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Zahed, Ahmed
AU - Hamani, Samira
AU - Graef, John R.
TI - Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 5
SP - 285
EP - 297
AB - In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.
LA - eng
KW - existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases
UR - http://eudml.org/doc/298285
ER -
References
top- Abbas, S., Benchohra, M., Graef, J.R., Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018. (2018) MR3791511
- Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) MR2962045
- Abbas, S., Benchohra, M., N’Guérékata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. (2015) Zbl1314.34002MR3309582
- Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T., On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl. 21 (2016), 661–681. (2016) MR3495061
- Agarwal, R.P., Benchohra, M., Hamani, S., Boundary value problems for fractional differential inclusions, Adv. Stud. Contemp. Math. 16 (2008), 181–196. (2008) MR2404634
- Agarwal, R.P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973–1033. (2010) MR2596185DOI10.1007/s10440-008-9356-6
- Aubin, J.P., Cellina, A., Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. (1984) Zbl0538.34007
- Aubin, J.P., Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston, 1990. (1990) Zbl0713.49021
- Benchohra, M., Souid, M.S., Integrable solutions for implicit fractional order differential equations, Transylvanian J. Math. Mechanics 6 (2014), 101–107. (2014) MR3303329
- Benchohra, M., Souid, M.S., 10.5817/AM2015-2-67, Arch. Math. (Brno) 51 (2015), 67–76. (2015) MR3367093DOI10.5817/AM2015-2-67
- Benchohra, M., Souid, M.S., 10.2298/FIL1606485B, Filomat 30 (2016), 1485–1492. (2016) MR3530093DOI10.2298/FIL1606485B
- Bohnenblust, H.F., Karlin, S., On a theorem of Ville, Contribution to the Theory of Games, Annals of Math. Studies, vol. 24, Princeton University Press, Princeton, 1950, pp. 155–160. (1950)
- Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494–505. (1991) DOI10.1016/0022-247X(91)90164-U
- Byszewski, L., Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, Selected problems of mathematics, , 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow,, 1995, pp. 25–30. (1995)
- Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0346.46038DOI10.1007/BFb0087688
- Covitz, H., Nadler, Jr., S.B., 10.1007/BF02771543, Israel J. Math. 8 (1970), 5–11. (1970) DOI10.1007/BF02771543
- Deimling, K., Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992. (1992) Zbl0820.34009
- Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179
- Guerraiche, N., Hamani, S., Henderson, J., Boundary value problems for differential inclusions with integral and anti-periodic conditions, Comm. Appl. Nonlinear Anal. 23 (2016), 33–46. (2016) MR3560553
- Guerraiche, N., Hamani, S., Henderson, J., 10.5817/AM2016-4-263, Arch. Math. (Brno) 52 (2016), 263–273. (2016) MR3610653DOI10.5817/AM2016-4-263
- Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002
- Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Studies, vol. 204, Elsevier, Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Momani, S.M., Hadid, S.B., Alawenh, Z.M., 10.1155/S0161171204302231, Int. J. Math. Math. Sci. 2004 (2004), 697–701. (2004) Zbl1069.34002MR2054178DOI10.1155/S0161171204302231
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008
- Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equ. 2006 (2006), no. 36, 1–12. (2006) Zbl1096.34016MR2213580
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.