Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions

Ahmed Zahed; Samira Hamani; John R. Graef

Archivum Mathematicum (2021)

  • Volume: 057, Issue: 5, page 285-297
  • ISSN: 0044-8753

Abstract

top
In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.

How to cite

top

Zahed, Ahmed, Hamani, Samira, and Graef, John R.. "Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions." Archivum Mathematicum 057.5 (2021): 285-297. <http://eudml.org/doc/298285>.

@article{Zahed2021,
abstract = {In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.},
author = {Zahed, Ahmed, Hamani, Samira, Graef, John R.},
journal = {Archivum Mathematicum},
keywords = {existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases},
language = {eng},
number = {5},
pages = {285-297},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions},
url = {http://eudml.org/doc/298285},
volume = {057},
year = {2021},
}

TY - JOUR
AU - Zahed, Ahmed
AU - Hamani, Samira
AU - Graef, John R.
TI - Boundary value problems for Hadamard-Caputo implicit fractional differential inclusions with nonlocal conditions
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 5
SP - 285
EP - 297
AB - In this paper, the authors establish sufficient conditions for the existence of solutions to implicit fractional differential inclusions with nonlocal conditions. Both of the cases of convex and nonconvex valued right hand sides are considered.
LA - eng
KW - existence; Hadamard-Caputo derivative; implicit fractional inclusion; convex and nonconvex cases
UR - http://eudml.org/doc/298285
ER -

References

top
  1. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018. (2018) MR3791511
  2. Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012. (2012) MR2962045
  3. Abbas, S., Benchohra, M., N’Guérékata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. (2015) Zbl1314.34002MR3309582
  4. Adjabi, Y., Jarad, F., Baleanu, D., Abdeljawad, T., On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl. 21 (2016), 661–681. (2016) MR3495061
  5. Agarwal, R.P., Benchohra, M., Hamani, S., Boundary value problems for fractional differential inclusions, Adv. Stud. Contemp. Math. 16 (2008), 181–196. (2008) MR2404634
  6. Agarwal, R.P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta Appl. Math. 109 (2010), 973–1033. (2010) MR2596185DOI10.1007/s10440-008-9356-6
  7. Aubin, J.P., Cellina, A., Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. (1984) Zbl0538.34007
  8. Aubin, J.P., Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston, 1990. (1990) Zbl0713.49021
  9. Benchohra, M., Souid, M.S., Integrable solutions for implicit fractional order differential equations, Transylvanian J. Math. Mechanics 6 (2014), 101–107. (2014) MR3303329
  10. Benchohra, M., Souid, M.S., 10.5817/AM2015-2-67, Arch. Math. (Brno) 51 (2015), 67–76. (2015) MR3367093DOI10.5817/AM2015-2-67
  11. Benchohra, M., Souid, M.S., 10.2298/FIL1606485B, Filomat 30 (2016), 1485–1492. (2016) MR3530093DOI10.2298/FIL1606485B
  12. Bohnenblust, H.F., Karlin, S., On a theorem of Ville, Contribution to the Theory of Games, Annals of Math. Studies, vol. 24, Princeton University Press, Princeton, 1950, pp. 155–160. (1950) 
  13. Byszewski, L., 10.1016/0022-247X(91)90164-U, J. Math. Anal. Appl. 162 (1991), 494–505. (1991) DOI10.1016/0022-247X(91)90164-U
  14. Byszewski, L., Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem, Selected problems of mathematics, , 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Krakow,, 1995, pp. 25–30. (1995) 
  15. Castaing, C., Valadier, M., 10.1007/BFb0087688, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0346.46038DOI10.1007/BFb0087688
  16. Covitz, H., Nadler, Jr., S.B., 10.1007/BF02771543, Israel J. Math. 8 (1970), 5–11. (1970) DOI10.1007/BF02771543
  17. Deimling, K., Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992. (1992) Zbl0820.34009
  18. Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179
  19. Guerraiche, N., Hamani, S., Henderson, J., Boundary value problems for differential inclusions with integral and anti-periodic conditions, Comm. Appl. Nonlinear Anal. 23 (2016), 33–46. (2016) MR3560553
  20. Guerraiche, N., Hamani, S., Henderson, J., 10.5817/AM2016-4-263, Arch. Math. (Brno) 52 (2016), 263–273. (2016) MR3610653DOI10.5817/AM2016-4-263
  21. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. (2000) Zbl0998.26002
  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Studies, vol. 204, Elsevier, Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  23. Momani, S.M., Hadid, S.B., Alawenh, Z.M., 10.1155/S0161171204302231, Int. J. Math. Math. Sci. 2004 (2004), 697–701. (2004) Zbl1069.34002MR2054178DOI10.1155/S0161171204302231
  24. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999. (1999) Zbl0924.34008
  25. Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equ. 2006 (2006), no. 36, 1–12. (2006) Zbl1096.34016MR2213580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.