The basic construction from the conditional expectation on the quantum double of a finite group

Qiaoling Xin; Lining Jiang; Zhenhua Ma

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 347-359
  • ISSN: 0011-4642

Abstract

top
Let G be a finite group and H a subgroup. Denote by D ( G ; H ) (or D ( G ) ) the crossed product of C ( G ) and H (or G ) with respect to the adjoint action of the latter on the former. Consider the algebra D ( G ) , e generated by D ( G ) and e , where we regard E as an idempotent operator e on D ( G ) for a certain conditional expectation E of D ( G ) onto D ( G ; H ) . Let us call D ( G ) , e the basic construction from the conditional expectation E : D ( G ) D ( G ; H ) . The paper constructs a crossed product algebra C ( G / H × G ) G , and proves that there is an algebra isomorphism between D ( G ) , e and C ( G / H × G ) G .

How to cite

top

Xin, Qiaoling, Jiang, Lining, and Ma, Zhenhua. "The basic construction from the conditional expectation on the quantum double of a finite group." Czechoslovak Mathematical Journal 65.2 (2015): 347-359. <http://eudml.org/doc/270102>.

@article{Xin2015,
abstract = {Let $G$ be a finite group and $H$ a subgroup. Denote by $D(G;H)$ (or $D(G)$) the crossed product of $C(G)$ and $\mathbb \{C\}H$ (or $\mathbb \{C\}G$) with respect to the adjoint action of the latter on the former. Consider the algebra $\langle D(G), e\rangle $ generated by $D(G)$ and $e$, where we regard $E$ as an idempotent operator $e$ on $D(G)$ for a certain conditional expectation $E$ of $D(G)$ onto $D(G;H)$. Let us call $\langle D(G), e\rangle $ the basic construction from the conditional expectation $E\colon D(G)\rightarrow D(G;H)$. The paper constructs a crossed product algebra $C(G/H\times G)\rtimes \mathbb \{C\}G$, and proves that there is an algebra isomorphism between $\langle D(G),e\rangle $ and $C(G/H\times G)\rtimes \mathbb \{C\}G$.},
author = {Xin, Qiaoling, Jiang, Lining, Ma, Zhenhua},
journal = {Czechoslovak Mathematical Journal},
keywords = {conditional expectation; basic construction; quantum double; quasi-basis},
language = {eng},
number = {2},
pages = {347-359},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The basic construction from the conditional expectation on the quantum double of a finite group},
url = {http://eudml.org/doc/270102},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Xin, Qiaoling
AU - Jiang, Lining
AU - Ma, Zhenhua
TI - The basic construction from the conditional expectation on the quantum double of a finite group
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 347
EP - 359
AB - Let $G$ be a finite group and $H$ a subgroup. Denote by $D(G;H)$ (or $D(G)$) the crossed product of $C(G)$ and $\mathbb {C}H$ (or $\mathbb {C}G$) with respect to the adjoint action of the latter on the former. Consider the algebra $\langle D(G), e\rangle $ generated by $D(G)$ and $e$, where we regard $E$ as an idempotent operator $e$ on $D(G)$ for a certain conditional expectation $E$ of $D(G)$ onto $D(G;H)$. Let us call $\langle D(G), e\rangle $ the basic construction from the conditional expectation $E\colon D(G)\rightarrow D(G;H)$. The paper constructs a crossed product algebra $C(G/H\times G)\rtimes \mathbb {C}G$, and proves that there is an algebra isomorphism between $\langle D(G),e\rangle $ and $C(G/H\times G)\rtimes \mathbb {C}G$.
LA - eng
KW - conditional expectation; basic construction; quantum double; quasi-basis
UR - http://eudml.org/doc/270102
ER -

References

top
  1. Bántay, P., 10.1016/0370-2693(90)90676-W, Phys. Lett., B 245 (1990), 477-479. (1990) MR1070067DOI10.1016/0370-2693(90)90676-W
  2. Bratteli, O., Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics. 1. C * - and W * -Algebras, Symmetry Groups, Decomposition of States, Texts and Monographs in Physics Springer, New York (1987). (1987) Zbl0905.46046MR0887100
  3. Dancer, K. A., Isac, P. S., Links, J., 10.1063/1.2359575, J. Math. Phys. 47 (2006), 103511, 18 pages. (2006) Zbl1112.17016MR2268877DOI10.1063/1.2359575
  4. Jiang, L., 10.1090/S0002-9939-10-10315-3, Proc. Am. Math. Soc. 138 (2010), 2793-2801. (2010) Zbl1215.16020MR2644893DOI10.1090/S0002-9939-10-10315-3
  5. Jiang, L., 10.1360/03YS0119, Sci. China, Ser. A 48 (2005), 57-66. (2005) Zbl1177.82024MR2156615DOI10.1360/03YS0119
  6. Jiang, L., Zhu, G., C * -index in double algebra of finite group, Trans. Beijing Inst. Technol. 23 (2003), 147-148 Chinese. (2003) Zbl1084.46044MR1976172
  7. Jones, V. F. R., Subfactors and Knots, Expository lectures from the CBMS regional conference, Annapolis, USA, 1988. Regional Conference Series in Mathematics 80 AMS, Providence (1991). (1991) Zbl0743.46058MR1134131
  8. Jones, V. F. R., 10.1007/BF01389127, Invent. Math. 72 (1983), 1-25. (1983) Zbl0508.46040MR0696688DOI10.1007/BF01389127
  9. Kassel, C., Quantum Groups, Graduate Texts in Mathematics 155 Springer, Berlin (1995). (1995) Zbl0808.17003MR1321145
  10. Kawahigashi, Y., Longo, R., 10.4007/annals.2004.160.493, Ann. Math. 160 (2004), 493-522. (2004) Zbl1083.46038MR2123931DOI10.4007/annals.2004.160.493
  11. Kosaki, H., 10.1016/0022-1236(86)90085-6, J. Funct. Anal. 66 (1986), 123-140. (1986) MR0829381DOI10.1016/0022-1236(86)90085-6
  12. Longo, R., 10.1007/BF02473354, Commun. Math. Phys. 130 (1990), 285-309. (1990) Zbl0705.46038MR1059320DOI10.1007/BF02473354
  13. Longo, R., 10.1007/BF02125124, Commun. Math. Phys. 126 (1989), 217-247. (1989) Zbl0682.46045MR1027496DOI10.1007/BF02125124
  14. Radford, D. E., 10.1006/jabr.1993.1102, J. Algebra 157 (1993), 285-315. (1993) Zbl0787.16028MR1220770DOI10.1006/jabr.1993.1102
  15. Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series W. A. Benjamin, New York (1969). (1969) Zbl0203.31601MR0252485
  16. Watatani, Y., Index for C * -subalgebras, Mem. Am. Math. Soc. 83 (1990). (1990) MR0996807

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.