Displaying similar documents to “On finite commutative loops which are centrally nilpotent”

Nonassociative triples in involutory loops and in loops of small order

Aleš Drápal, Jan Hora (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A loop of order n possesses at least 3 n 2 - 3 n + 1 associative triples. However, no loop of order n > 1 that achieves this bound seems to be known. If the loop is involutory, then it possesses at least 3 n 2 - 2 n associative triples. Involutory loops with 3 n 2 - 2 n associative triples can be obtained by prolongation of certain maximally nonassociative quasigroups whenever n - 1 is a prime greater than or equal to 13 or n - 1 = p 2 k , p an odd prime. For orders n 9 the minimum number of associative triples is reported for both general...

Automorphic loops and metabelian groups

Mark Greer, Lee Raney (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a uniquely 2-divisible group G , we study a commutative loop ( G , ) which arises as a result of a construction in “Engelsche elemente noetherscher gruppen” (1957) by R. Baer. We investigate some general properties and applications of “ ” and determine a necessary and sufficient condition on G in order for ( G , ) to be Moufang. In “A class of loops categorically isomorphic to Bruck loops of odd order” (2014) by M. Greer, it is conjectured that G is metabelian if and only if ( G , ) is an automorphic...

The centre of a Steiner loop and the maxi-Pasch problem

Andrew R. Kozlik (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A binary operation “ · ” which satisfies the identities x · e = x , x · x = e , ( x · y ) · x = y and x · y = y · x is called a Steiner loop. This paper revisits the proof of the necessary and sufficient conditions for the existence of a Steiner loop of order n with centre of order m and discusses the connection of this problem to the question of the maximum number of Pasch configurations which can occur in a Steiner triple system (STS) of a given order. An STS which attains this maximum for a given order is said to be . We show that...

On dicyclic groups as inner mapping groups of finite loops

Emma Leppälä, Markku Niemenmaa (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a finite group with a dicyclic subgroup H . We show that if there exist H -connected transversals in G , then G is a solvable group. We apply this result to loop theory and show that if the inner mapping group I ( Q ) of a finite loop Q is dicyclic, then Q is a solvable loop. We also discuss a more general solvability criterion in the case where I ( Q ) is a certain type of a direct product.

Partial differential equations in Banach spaces involving nilpotent linear operators

Antonia Chinnì, Paolo Cubiotti (1996)

Annales Polonici Mathematici

Similarity:

Let E be a Banach space. We consider a Cauchy problem of the type ⎧ D t k u + j = 0 k - 1 | α | m A j , α ( D t j D x α u ) = f in n + 1 , ⎨ ⎩ D t j u ( 0 , x ) = φ j ( x ) in n , j=0,...,k-1, where each A j , α is a given continuous linear operator from E into itself. We prove that if the operators A j , α are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions u C ( n + 1 , E ) whose derivatives are equi-bounded on each bounded subset of n + 1 .

Normality, nuclear squares and Osborn identities

Aleš Drápal, Michael Kinyon (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let Q be a loop. If S Q is such that ϕ ( S ) S for each standard generator of  Inn Q , then S does not have to be a normal subloop. In an LC loop the left and middle nucleus coincide and form a normal subloop. The identities of Osborn loops are obtained by applying the idea of nuclear identification, and various connections of Osborn loops to Moufang and CC loops are discussed. Every Osborn loop possesses a normal nucleus, and this nucleus coincides with the left, the right and the middle nucleus....

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

Images of locally nilpotent derivations of bivariate polynomial algebras over a domain

Xiaosong Sun, Beini Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let R be a domain containing a field of characteristic zero. We prove that, when R is a one-dimensional unique factorization domain, the image of any locally nilpotent R -derivation of the bivariate polynomial algebra R [ x , y ] is a Mathieu-Zhao subspace. Moreover, we prove that, when R is a Dedekind domain, the image of a locally nilpotent R -derivation of R [ x , y ] with some...

Generating varieties for the triple loop space of classical Lie groups

Yasuhiko Kamiyama (2003)

Fundamenta Mathematicae

Similarity:

For G = SU(n), Sp(n) or Spin(n), let C G ( S U ( 2 ) ) be the centralizer of a certain SU(2) in G. We have a natural map J : G / C G ( S U ( 2 ) ) Ω ³ G . For a generator α of H ( G / C G ( S U ( 2 ) ) ; / 2 ) , we describe J⁎(α). In particular, it is proved that J : H ( G / C G ( S U ( 2 ) ) ; / 2 ) H ( Ω ³ G ; / 2 ) is injective.

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...