On Laplacian eigenvalues of connected graphs

Igor Ž. Milovanović; Emina I. Milovanović; Edin Glogić

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 2, page 529-535
  • ISSN: 0011-4642

Abstract

top
Let G be an undirected connected graph with n , n 3 , vertices and m edges with Laplacian eigenvalues μ 1 μ 2 μ n - 1 > μ n = 0 . Denote by μ I = μ r 1 + μ r 2 + + μ r k , 1 k n - 2 , 1 r 1 < r 2 < < r k n - 1 , the sum of k arbitrary Laplacian eigenvalues, with μ I 1 = μ 1 + μ 2 + + μ k and μ I n = μ n - k + + μ n - 1 . Lower bounds of graph invariants μ I 1 - μ I n and μ I 1 / μ I n are obtained. Some known inequalities follow as a special case.

How to cite

top

Milovanović, Igor Ž., Milovanović, Emina I., and Glogić, Edin. "On Laplacian eigenvalues of connected graphs." Czechoslovak Mathematical Journal 65.2 (2015): 529-535. <http://eudml.org/doc/270127>.

@article{Milovanović2015,
abstract = {Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _\{n-1\}>\mu _n =0$. Denote by $\mu _I =\mu _\{r_1\}+\mu _\{r_2\} +\cdots +\mu _\{r_k\}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _\{I_1\}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _\{I_n\}=\mu _\{n-k\}+\cdots +\mu _\{n-1\}$. Lower bounds of graph invariants $\mu _\{I_1\}-\mu _\{I_n\}$ and $\{\mu _\{I_1\}\}/\{\mu _\{I_n\}\}$ are obtained. Some known inequalities follow as a special case.},
author = {Milovanović, Igor Ž., Milovanović, Emina I., Glogić, Edin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalues; linear spread; ratio spread},
language = {eng},
number = {2},
pages = {529-535},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Laplacian eigenvalues of connected graphs},
url = {http://eudml.org/doc/270127},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Milovanović, Igor Ž.
AU - Milovanović, Emina I.
AU - Glogić, Edin
TI - On Laplacian eigenvalues of connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 529
EP - 535
AB - Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _{I_1}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _{I_n}=\mu _{n-k}+\cdots +\mu _{n-1}$. Lower bounds of graph invariants $\mu _{I_1}-\mu _{I_n}$ and ${\mu _{I_1}}/{\mu _{I_n}}$ are obtained. Some known inequalities follow as a special case.
LA - eng
KW - Laplacian eigenvalues; linear spread; ratio spread
UR - http://eudml.org/doc/270127
ER -

References

top
  1. Biggs, N., Algebraic Graph Theory, Cambridge University Press Cambridge (1974). (1974) Zbl0284.05101MR0347649
  2. Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B., On Laplacian energy, MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. (2013) Zbl1299.05212MR3155574
  3. Diaz, J. B., Matcalf, F. T., 10.1090/S0002-9904-1963-10953-2, Bull. Am. Math. Soc. 69 (1963), 415-418. (1963) MR0146324DOI10.1090/S0002-9904-1963-10953-2
  4. Du, Z., Zhou, B., 10.1016/j.laa.2012.01.007, Linear Algebra Appl. 436 (2012), 3672-3683. (2012) Zbl1241.05074MR2900744DOI10.1016/j.laa.2012.01.007
  5. Edwards, C. S., 10.1112/blms/9.2.203, Bull. Lond. Math. Soc. 9 (1977), 203-208. (1977) Zbl0357.05058MR0463005DOI10.1112/blms/9.2.203
  6. Fath-Tabar, G. H., Ashrafi, A. R., Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010), 443-451. (2010) Zbl1206.05062MR2814304
  7. Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V., On the sum of the Laplacian eigenvalues of a tree, Linear Algebra Appl. 435 (2011), 371-399. (2011) MR2782788
  8. Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
  9. Gutman, I., Das, K. Ch., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. (2004) Zbl1053.05115MR2037426
  10. Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Total -electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
  11. Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B., 10.1016/j.laa.2009.03.038, Linear Algebra Appl. 432 (2010), 2214-2221. (2010) Zbl1218.05094MR2599854DOI10.1016/j.laa.2009.03.038
  12. Li, R., Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs, Int. Math. Forum 5 (2010), 1855-1860. (2010) MR2672449
  13. Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
  14. Ozeki, N., On the estimation of the inequality by the maximum, or minimum values, J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. (1968) MR0254198
  15. Rojo, O., Soto, R., Rojo, H., 10.1016/S0898-1221(00)00060-2, Comput. Math. Appl. 39 (2000), 1-15. (2000) Zbl0957.15013MR1746162DOI10.1016/S0898-1221(00)00060-2
  16. You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
  17. You, Z., Liu, B., 10.1007/s10587-012-0003-z, Czech. Math. J. 62 (2012), 155-168. (2012) Zbl1245.05089MR2899742DOI10.1007/s10587-012-0003-z
  18. Zhou, B., 10.1515/zna-2004-0310, Z. Naturforsch. 59a (2004), 181-184. (2004) DOI10.1515/zna-2004-0310

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.