On Laplacian eigenvalues of connected graphs
Igor Ž. Milovanović; Emina I. Milovanović; Edin Glogić
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 2, page 529-535
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMilovanović, Igor Ž., Milovanović, Emina I., and Glogić, Edin. "On Laplacian eigenvalues of connected graphs." Czechoslovak Mathematical Journal 65.2 (2015): 529-535. <http://eudml.org/doc/270127>.
@article{Milovanović2015,
abstract = {Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _\{n-1\}>\mu _n =0$. Denote by $\mu _I =\mu _\{r_1\}+\mu _\{r_2\} +\cdots +\mu _\{r_k\}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _\{I_1\}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _\{I_n\}=\mu _\{n-k\}+\cdots +\mu _\{n-1\}$. Lower bounds of graph invariants $\mu _\{I_1\}-\mu _\{I_n\}$ and $\{\mu _\{I_1\}\}/\{\mu _\{I_n\}\}$ are obtained. Some known inequalities follow as a special case.},
author = {Milovanović, Igor Ž., Milovanović, Emina I., Glogić, Edin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalues; linear spread; ratio spread},
language = {eng},
number = {2},
pages = {529-535},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Laplacian eigenvalues of connected graphs},
url = {http://eudml.org/doc/270127},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Milovanović, Igor Ž.
AU - Milovanović, Emina I.
AU - Glogić, Edin
TI - On Laplacian eigenvalues of connected graphs
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 2
SP - 529
EP - 535
AB - Let $G$ be an undirected connected graph with $n$, $n\ge 3$, vertices and $m$ edges with Laplacian eigenvalues $\mu _1\ge \mu _2 \ge \cdots \ge \mu _{n-1}>\mu _n =0$. Denote by $\mu _I =\mu _{r_1}+\mu _{r_2} +\cdots +\mu _{r_k}$, $1\le k\le n-2$, $1\le r_1<r_2<\cdots <r_k\le n-1$, the sum of $k$ arbitrary Laplacian eigenvalues, with $\mu _{I_1}=\mu _1+\mu _2+\cdots +\mu _k$ and $\mu _{I_n}=\mu _{n-k}+\cdots +\mu _{n-1}$. Lower bounds of graph invariants $\mu _{I_1}-\mu _{I_n}$ and ${\mu _{I_1}}/{\mu _{I_n}}$ are obtained. Some known inequalities follow as a special case.
LA - eng
KW - Laplacian eigenvalues; linear spread; ratio spread
UR - http://eudml.org/doc/270127
ER -
References
top- Biggs, N., Algebraic Graph Theory, Cambridge University Press Cambridge (1974). (1974) Zbl0284.05101MR0347649
- Das, K. Ch., Gutman, I., Çevik, A. S., Zhou, B., On Laplacian energy, MATCH Commun. Math. Comput. Chem. 70 (2013), 689-696. (2013) Zbl1299.05212MR3155574
- Diaz, J. B., Matcalf, F. T., 10.1090/S0002-9904-1963-10953-2, Bull. Am. Math. Soc. 69 (1963), 415-418. (1963) MR0146324DOI10.1090/S0002-9904-1963-10953-2
- Du, Z., Zhou, B., 10.1016/j.laa.2012.01.007, Linear Algebra Appl. 436 (2012), 3672-3683. (2012) Zbl1241.05074MR2900744DOI10.1016/j.laa.2012.01.007
- Edwards, C. S., 10.1112/blms/9.2.203, Bull. Lond. Math. Soc. 9 (1977), 203-208. (1977) Zbl0357.05058MR0463005DOI10.1112/blms/9.2.203
- Fath-Tabar, G. H., Ashrafi, A. R., Some remarks on Laplacian eigenvalues and Laplacian energy of graphs, Math. Commun. 15 (2010), 443-451. (2010) Zbl1206.05062MR2814304
- Fritsher, E., Hoppen, C., Rocha, I., Trevisan, V., On the sum of the Laplacian eigenvalues of a tree, Linear Algebra Appl. 435 (2011), 371-399. (2011) MR2782788
- Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
- Gutman, I., Das, K. Ch., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92. (2004) Zbl1053.05115MR2037426
- Gutman, I., Trinajstić, N., 10.1016/0009-2614(72)85099-1, Total -electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535-538. (1972) DOI10.1016/0009-2614(72)85099-1
- Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B., 10.1016/j.laa.2009.03.038, Linear Algebra Appl. 432 (2010), 2214-2221. (2010) Zbl1218.05094MR2599854DOI10.1016/j.laa.2009.03.038
- Li, R., Inequalities on vertex degrees, eigenvalues and (singless) Laplacian eigenvalues of graphs, Int. Math. Forum 5 (2010), 1855-1860. (2010) MR2672449
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Ozeki, N., On the estimation of the inequality by the maximum, or minimum values, J. College Arts Sci. Chiba Univ. Japanese 5 (1968), 199-203. (1968) MR0254198
- Rojo, O., Soto, R., Rojo, H., 10.1016/S0898-1221(00)00060-2, Comput. Math. Appl. 39 (2000), 1-15. (2000) Zbl0957.15013MR1746162DOI10.1016/S0898-1221(00)00060-2
- You, Z., Liu, B., 10.1016/j.aml.2011.09.071, Appl. Math. Lett. 25 (2012), 1245-1250. (2012) Zbl1248.05116MR2947387DOI10.1016/j.aml.2011.09.071
- You, Z., Liu, B., 10.1007/s10587-012-0003-z, Czech. Math. J. 62 (2012), 155-168. (2012) Zbl1245.05089MR2899742DOI10.1007/s10587-012-0003-z
- Zhou, B., 10.1515/zna-2004-0310, Z. Naturforsch. 59a (2004), 181-184. (2004) DOI10.1515/zna-2004-0310
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.