The Laplacian spread of graphs
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 1, page 155-168
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYou, Zhifu, and Liu, Bo Lian. "The Laplacian spread of graphs." Czechoslovak Mathematical Journal 62.1 (2012): 155-168. <http://eudml.org/doc/246640>.
@article{You2012,
abstract = {The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.},
author = {You, Zhifu, Liu, Bo Lian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalues; spread; Laplacian eigenvalue; Laplacian spread},
language = {eng},
number = {1},
pages = {155-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Laplacian spread of graphs},
url = {http://eudml.org/doc/246640},
volume = {62},
year = {2012},
}
TY - JOUR
AU - You, Zhifu
AU - Liu, Bo Lian
TI - The Laplacian spread of graphs
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 155
EP - 168
AB - The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.
LA - eng
KW - Laplacian eigenvalues; spread; Laplacian eigenvalue; Laplacian spread
UR - http://eudml.org/doc/246640
ER -
References
top- Bao, Y. H., Tan, Y. Y., Fan, Y. Z., 10.1016/j.aml.2009.01.023, Appl. Math. Lett. 22 (2009), 1011-1015. (2009) Zbl1179.05069MR2522991DOI10.1016/j.aml.2009.01.023
- Chen, Y., Wang, L., 10.37236/169, Electron. J. Comb. 16 (2009), R80. (2009) Zbl1230.05198MR2529789DOI10.37236/169
- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs, VEB Deutscher Verlag der Wissenschaften Berlin (1980). (1980) Zbl0458.05042
- Das, K. C., 10.1016/j.camwa.2004.05.005, Comput. Math. Appl. 48 (2004), 715-724. (2004) Zbl1058.05048MR2105246DOI10.1016/j.camwa.2004.05.005
- Dam, E. R. van, Haemers, W. H., 10.1016/S0012-365X(97)00150-7, Discrete Math. 182 (1998), 293-307. (1998) MR1603715DOI10.1016/S0012-365X(97)00150-7
- Fan, Y. Z., Xu, J., Wang, Y., Liang, D., The Laplacian spread of a tree, Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only. (2008) Zbl1153.05323MR2383736
- Fan, Y., Li, S., Tan, Y., The Laplacian spread of bicyclic graphs, J. Math. Res. Expo. 30 (2010), 17-28. (2010) MR2605816
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 98-305. (1973) Zbl0265.05119MR0318007
- Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
- Gregory, D. A., Hershkowitz, D., Kirkland, S. J., The spread of the spectrum of a graph, Linear Algebra Appl. 332-334 (2001), 23-35. (2001) Zbl0978.05049MR1839425
- Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-239. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
- Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
- Hong, Y., Shu, J. L., 10.1016/S0012-365X(99)90280-7, Discrete Math. 211 (2000), 229-232. (2000) Zbl0952.05045MR1735340DOI10.1016/S0012-365X(99)90280-7
- Lazić, M., 10.1007/s10587-006-0089-2, Czech. Math. J. 56 (2006), 1207-1213. (2006) Zbl1164.05408MR2280804DOI10.1007/s10587-006-0089-2
- Li, J., Shiu, W. C., Chan, W. H., Some results on the Laplacian eigenvalues of unicyclic graphs, Linear Algebra Appl. 430 (2009), 2080-2093. (2009) Zbl1225.05169MR2503955
- Li, P., Shi, J. S., Li, R. L., Laplacian spread of bicyclic graphs, J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese. (2010) MR2682387
- Liu, H., Lu, M., Tian, F., On the Laplacian spectral radius of a graph, Linear Algebra Appl. 376 (2004), 135-141. (2004) Zbl1032.05087MR2014889
- Liu, B., Liu, M.-H., 10.1016/j.disc.2008.06.026, Discrete Math. 309 (2009), 2727-2732. (2009) Zbl1194.05091MR2523780DOI10.1016/j.disc.2008.06.026
- Lu, M., Liu, H., Tian, F., 10.1016/j.jctb.2006.12.003, J. Comb. Theory, Ser. B 97 (2007), 726-732. (2007) Zbl1122.05072MR2344135DOI10.1016/j.jctb.2006.12.003
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Nordhaus, E. A., Gaddum, J. W., 10.2307/2306658, Am. Math. Mon. 63 (1956), 175-177. (1956) Zbl0070.18503MR0078685DOI10.2307/2306658
- Ozeki, N., On the estimation of the inequality by the maximum, J. College Arts Chiba Univ. 5 (1968), 199-203. (1968) MR0254198
- Shi, L., 10.1016/j.laa.2006.12.003, Linear Algebra Appl. 422 (2007), 755-770. (2007) Zbl1113.05065MR2305155DOI10.1016/j.laa.2006.12.003
- You, Z., Liu, B., 10.1016/j.laa.2009.08.027, Linear Algebra Appl. 432 (2010), 499-504. (2010) Zbl1206.05066MR2577695DOI10.1016/j.laa.2009.08.027
- Zhang, X., On the two conjectures of Graffiti, Linear Algebra Appl. 385 (2004), 369-379. (2004) Zbl1051.05062MR2063360
- Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023
Citations in EuDML Documents
top- Igor Milovanović, Emina Milovanović, Remark on inequalities for the Laplacian spread of graphs
- Igor Ž. Milovanović, Emina I. Milovanović, Edin Glogić, On Laplacian eigenvalues of connected graphs
- Emina Milovanović, Şerife Burcu Bozkurt Altındağ, Marjan Matejić, Igor Milovanović, Inequalities for real number sequences with applications in spectral graph theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.