The Laplacian spread of graphs

Zhifu You; Bo Lian Liu

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 1, page 155-168
  • ISSN: 0011-4642

Abstract

top
The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected c -cyclic graphs with n vertices and Laplacian spread n - 1 are discussed.

How to cite

top

You, Zhifu, and Liu, Bo Lian. "The Laplacian spread of graphs." Czechoslovak Mathematical Journal 62.1 (2012): 155-168. <http://eudml.org/doc/246640>.

@article{You2012,
abstract = {The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.},
author = {You, Zhifu, Liu, Bo Lian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian eigenvalues; spread; Laplacian eigenvalue; Laplacian spread},
language = {eng},
number = {1},
pages = {155-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Laplacian spread of graphs},
url = {http://eudml.org/doc/246640},
volume = {62},
year = {2012},
}

TY - JOUR
AU - You, Zhifu
AU - Liu, Bo Lian
TI - The Laplacian spread of graphs
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 1
SP - 155
EP - 168
AB - The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected $c$-cyclic graphs with $n$ vertices and Laplacian spread $n-1$ are discussed.
LA - eng
KW - Laplacian eigenvalues; spread; Laplacian eigenvalue; Laplacian spread
UR - http://eudml.org/doc/246640
ER -

References

top
  1. Bao, Y. H., Tan, Y. Y., Fan, Y. Z., 10.1016/j.aml.2009.01.023, Appl. Math. Lett. 22 (2009), 1011-1015. (2009) Zbl1179.05069MR2522991DOI10.1016/j.aml.2009.01.023
  2. Chen, Y., Wang, L., 10.37236/169, Electron. J. Comb. 16 (2009), R80. (2009) Zbl1230.05198MR2529789DOI10.37236/169
  3. Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs, VEB Deutscher Verlag der Wissenschaften Berlin (1980). (1980) Zbl0458.05042
  4. Das, K. C., 10.1016/j.camwa.2004.05.005, Comput. Math. Appl. 48 (2004), 715-724. (2004) Zbl1058.05048MR2105246DOI10.1016/j.camwa.2004.05.005
  5. Dam, E. R. van, Haemers, W. H., 10.1016/S0012-365X(97)00150-7, Discrete Math. 182 (1998), 293-307. (1998) MR1603715DOI10.1016/S0012-365X(97)00150-7
  6. Fan, Y. Z., Xu, J., Wang, Y., Liang, D., The Laplacian spread of a tree, Discrete Math. Theor. Comput. Sci. 10 (2008), 79-86 Electronic only. (2008) Zbl1153.05323MR2383736
  7. Fan, Y., Li, S., Tan, Y., The Laplacian spread of bicyclic graphs, J. Math. Res. Expo. 30 (2010), 17-28. (2010) MR2605816
  8. Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 98-305. (1973) Zbl0265.05119MR0318007
  9. Goldberg, F., 10.1016/j.laa.2005.07.007, Linear Algebra Appl. 416 (2006), 68-74. (2006) Zbl1107.05059MR2232920DOI10.1016/j.laa.2005.07.007
  10. Gregory, D. A., Hershkowitz, D., Kirkland, S. J., The spread of the spectrum of a graph, Linear Algebra Appl. 332-334 (2001), 23-35. (2001) Zbl0978.05049MR1839425
  11. Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-239. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
  12. Grone, R., Merris, R., 10.1137/S0895480191222653, SIAM J. Discrete Math. 7 (1994), 221-229. (1994) Zbl0795.05092MR1271994DOI10.1137/S0895480191222653
  13. Hong, Y., Shu, J. L., 10.1016/S0012-365X(99)90280-7, Discrete Math. 211 (2000), 229-232. (2000) Zbl0952.05045MR1735340DOI10.1016/S0012-365X(99)90280-7
  14. Lazić, M., 10.1007/s10587-006-0089-2, Czech. Math. J. 56 (2006), 1207-1213. (2006) Zbl1164.05408MR2280804DOI10.1007/s10587-006-0089-2
  15. Li, J., Shiu, W. C., Chan, W. H., Some results on the Laplacian eigenvalues of unicyclic graphs, Linear Algebra Appl. 430 (2009), 2080-2093. (2009) Zbl1225.05169MR2503955
  16. Li, P., Shi, J. S., Li, R. L., Laplacian spread of bicyclic graphs, J. East China Norm. Univ. (Nat. Sci. Ed.) 1 (2010), 6-9 Chinese. (2010) MR2682387
  17. Liu, H., Lu, M., Tian, F., On the Laplacian spectral radius of a graph, Linear Algebra Appl. 376 (2004), 135-141. (2004) Zbl1032.05087MR2014889
  18. Liu, B., Liu, M.-H., 10.1016/j.disc.2008.06.026, Discrete Math. 309 (2009), 2727-2732. (2009) Zbl1194.05091MR2523780DOI10.1016/j.disc.2008.06.026
  19. Lu, M., Liu, H., Tian, F., 10.1016/j.jctb.2006.12.003, J. Comb. Theory, Ser. B 97 (2007), 726-732. (2007) Zbl1122.05072MR2344135DOI10.1016/j.jctb.2006.12.003
  20. Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
  21. Nordhaus, E. A., Gaddum, J. W., 10.2307/2306658, Am. Math. Mon. 63 (1956), 175-177. (1956) Zbl0070.18503MR0078685DOI10.2307/2306658
  22. Ozeki, N., On the estimation of the inequality by the maximum, J. College Arts Chiba Univ. 5 (1968), 199-203. (1968) MR0254198
  23. Shi, L., 10.1016/j.laa.2006.12.003, Linear Algebra Appl. 422 (2007), 755-770. (2007) Zbl1113.05065MR2305155DOI10.1016/j.laa.2006.12.003
  24. You, Z., Liu, B., 10.1016/j.laa.2009.08.027, Linear Algebra Appl. 432 (2010), 499-504. (2010) Zbl1206.05066MR2577695DOI10.1016/j.laa.2009.08.027
  25. Zhang, X., On the two conjectures of Graffiti, Linear Algebra Appl. 385 (2004), 369-379. (2004) Zbl1051.05062MR2063360
  26. Zhou, B., 10.1016/j.laa.2008.06.023, Linear Algebra Appl. 429 (2008), 2239-2246. (2008) Zbl1144.05325MR2446656DOI10.1016/j.laa.2008.06.023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.