Placing bipartite graphs of small size II
Discussiones Mathematicae Graph Theory (1996)
- Volume: 16, Issue: 2, page 93-110
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topBeata Orchel. "Placing bipartite graphs of small size II." Discussiones Mathematicae Graph Theory 16.2 (1996): 93-110. <http://eudml.org/doc/270143>.
@article{BeataOrchel1996,
abstract = {In this paper we give all pairs of non mutually placeable (p,q)-bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤ 2p+q-1.},
author = {Beata Orchel},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {packing of graphs; bipartite graph; bipartite graphs},
language = {eng},
number = {2},
pages = {93-110},
title = {Placing bipartite graphs of small size II},
url = {http://eudml.org/doc/270143},
volume = {16},
year = {1996},
}
TY - JOUR
AU - Beata Orchel
TI - Placing bipartite graphs of small size II
JO - Discussiones Mathematicae Graph Theory
PY - 1996
VL - 16
IS - 2
SP - 93
EP - 110
AB - In this paper we give all pairs of non mutually placeable (p,q)-bipartite graphs G and H such that 2 ≤ p ≤ q, e(H) ≤ p and e(G)+e(H) ≤ 2p+q-1.
LA - eng
KW - packing of graphs; bipartite graph; bipartite graphs
UR - http://eudml.org/doc/270143
ER -
References
top- [1] C. Berge, Graphs (North-Holland Mathematical Library 6, Amsterdam, New York, Oxford 1985).
- [2] B. Bollobás, S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8. Zbl0387.05020
- [3] A.P. Catlin, Subgraphs of graphs 1, Discrete Math. 10 (1974) 225-233, doi: 10.1016/0012-365X(74)90119-8. Zbl0289.05122
- [4] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A. Zbl0791.05080
- [5] G. Frobenius, Über zerlegbare Determinanten, Sitzungsber, König. Preuss. Akad. Wiss. XVIII (1917) 274-277.
- [6] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. Zbl0010.34503
- [7] P. Hajnal and M. Szegedy, On packing bipartite graphs, Combinatorica 12 (1992) 295-301, doi: 10.1007/BF01285818. Zbl0772.05079
- [8] B. Orchel, Placing bipartite graphs of small size I, Folia Scientiarum Universitatis Technicae Resoviensis, 118 (1993) 51-58.
- [9] R. Rado, A theorem on general measure functions, Proc. London Math. Soc. 44 (2) (1938) 61-91, doi: 10.1112/plms/s2-44.1.61. Zbl0019.05501
- [10] S.K. Teo and H.P. Yap, Packing two graphs of order n having total size at most 2n-2, Graphs and Combinatorics 6 (1990) 197-205, doi: 10.1007/BF01787731. Zbl0727.05049
- [11] A.P. Wojda and P. Vaderlind, Packing bipartite graphs, to appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.