Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe

Stéphane Louboutin

Acta Arithmetica (1996)

  • Volume: 74, Issue: 2, page 121-140
  • ISSN: 0065-1036

How to cite

top

Stéphane Louboutin. "Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe." Acta Arithmetica 74.2 (1996): 121-140. <http://eudml.org/doc/270214>.

@article{StéphaneLouboutin1996,
author = {Stéphane Louboutin},
journal = {Acta Arithmetica},
language = {fre},
number = {2},
pages = {121-140},
title = {Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe},
url = {http://eudml.org/doc/270214},
volume = {74},
year = {1996},
}

TY - JOUR
AU - Stéphane Louboutin
TI - Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe
JO - Acta Arithmetica
PY - 1996
VL - 74
IS - 2
SP - 121
EP - 140
LA - fre
UR - http://eudml.org/doc/270214
ER -

References

top
  1. [Coh] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1994. 
  2. [C-C] H. Cohn and G. Cooke, Parametric form of an eight class field, Acta Arith. 30 (1976), 367-377. Zbl0299.12004
  3. [Cox] D. A. Cox, Primes of the Form x²+ny², Wiley, 1989. Zbl1275.11002
  4. [D-P] P. Damey et J. J. Payan, Existence et construction des extensions galoisiennes et non abéliennes de degré 8 d'un corps de caractéristique différente de 2, J. Reine Angew. Math. 244 (1970), 37-54. Zbl0206.34401
  5. [Hal] M. Hall, The Theory of Groups, Chapter 12, Macmillan, New York, 1959. 
  6. [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
  7. [Lou 1] S. Louboutin, Norme relative de l'unité fondamentale et 2-rang du groupe des classes d'idéaux de certains corps biquadratiques, Acta Arith. 58 (1991), 273-288. Zbl0703.11050
  8. [Lou 2] S. Louboutin, Calcul des nombres de classes relatifs de certains corps de classes de Hilbert, C. R. Acad. Sci. Paris 319 (1994), 321-325. 
  9. [Lou 3] S. Louboutin, Determination of all quaternion octic CM-fields with class number two, J. London Math. Soc., to appear. 
  10. [Lou-Oka] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. Zbl0809.11069
  11. [M-M] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256. Zbl0335.12013
  12. [M-W] H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1974), 529-542. Zbl0285.12004
  13. [Odl 1] A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. Zbl0299.12010
  14. [Odl 2] A. M. Odlyzko, On conductors and discriminants, in: Algebraic Number Fields: L-functions and Galois Properties, Proc. Sympos., Univ. Durham, Durham 1975, Academic Press, London, 1977, 377-407. 
  15. [S-P-D] A. Schwarz, M. Pohst and F. Diaz y Diaz, A table of quintic number fields, Math. Comp. 63 (1994), 361-376. Zbl0822.11087
  16. [Sta 1] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1-27. 
  17. [Sta 2] H. M. Stark, On complex quadratic fields with class-number two, Math. Comp. 29 (1975), 289-302. Zbl0321.12009
  18. [Uch 1] K. Uchida, Imaginary abelian number fields with class number one, Tôhoku Math. J. 24 (1972), 487-499. Zbl0248.12007
  19. [Uch 2] K. Uchida, Imaginary abelian number fields of degrees 2 m with class number one, in: Class Numbers and Fundamental Units of Algebraic Number Fields, Proc. Internat. Conf. Katata/Jap., 1986, 151-170. 
  20. [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer, 1982. 
  21. [W-B] H. C. Williams and J. Broere, A computational technique for evaluating L(1,χ) and the class number of a real quadratic field, Math. Comp. 30 (1976), 887-893. Zbl0345.12004
  22. [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921. Zbl0798.11046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.