The class number one problem for the non-abelian normal CM-fields of degree 16
Acta Arithmetica (1997)
- Volume: 82, Issue: 2, page 173-196
- ISSN: 0065-1036
Access Full Article
topHow to cite
topStéphane Louboutin. "The class number one problem for the non-abelian normal CM-fields of degree 16." Acta Arithmetica 82.2 (1997): 173-196. <http://eudml.org/doc/207087>.
@article{StéphaneLouboutin1997,
author = {Stéphane Louboutin},
journal = {Acta Arithmetica},
keywords = {CM-field; relative class number; zeta function; dihedral octic CM-fields},
language = {eng},
number = {2},
pages = {173-196},
title = {The class number one problem for the non-abelian normal CM-fields of degree 16},
url = {http://eudml.org/doc/207087},
volume = {82},
year = {1997},
}
TY - JOUR
AU - Stéphane Louboutin
TI - The class number one problem for the non-abelian normal CM-fields of degree 16
JO - Acta Arithmetica
PY - 1997
VL - 82
IS - 2
SP - 173
EP - 196
LA - eng
KW - CM-field; relative class number; zeta function; dihedral octic CM-fields
UR - http://eudml.org/doc/207087
ER -
References
top- [CH] P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Sci., Singapore, 1988.
- [Hof] J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47. Zbl0474.12009
- [Lef] Y. Lefeuvre, The class number one problem for dihedral CM-fields, in preparation.
- [Lem] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields, to appear. Zbl0890.11031
- [LLO] F. Lemmermeyer, S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, in preparation. Zbl1010.11063
- [Lou 1] S. Louboutin, Majorations explicites de ∣L(1,χ)∣, C. R. Acad. Sci. Paris 316 (1993), 11-14. Zbl0774.11051
- [Lou 2] S. Louboutin, On the class number one problem for non-normal quartic CM-fields, Tôhoku Math. J. 46 (1994), 1-12.
- [Lou 3] S. Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), 425-434. Zbl0795.11058
- [Lou 4] S. Louboutin, Calcul du nombre de classes des corps de nombres, Pacific J. Math. 171 (1995), 455-467.
- [Lou 5] S. Louboutin, Corps quadratiques à corps de classes de Hilbert principaux et à multiplication complexe, Acta Arith. 74 (1996), 121-140.
- [Lou 6] S. Louboutin, Determination of all quaternion octic CM-fields with class number 2, J. London Math. Soc. 54 (1996), 227-238. Zbl0861.11064
- [Lou 7] S. Louboutin, Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, to appear.
- [Lou 8] S. Louboutin, CM-fields with cyclic ideal class groups of 2-power orders, J. Number Theory, to appear. Zbl0881.11078
- [LouOka 1] S. Louboutin and R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one, Acta Arith. 67 (1994), 47-62. Zbl0809.11069
- [LouOka 2] S. Louboutin and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees, Proc. London Math. Soc., to appear. Zbl0891.11054
- [LOO] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc., to appear. Zbl0893.11045
- [Odl] A. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), 275-286. Zbl0299.12010
- [Uch] K. Uchida, Imaginary abelian number fields with class number one, Tôhoku Math. J. 24 (1972), 487-499. Zbl0248.12007
- [Wa] L. C. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.
- [Yam] K. Yamamura, The determination of the imaginary abelian number fields with class-number one, Math. Comp. 62 (1994), 899-921. Zbl0798.11046
- [YPJK] H. S. Yang, Y. H. Park, S. W. Jung and S. H. Kwon, Determination of all octic dihedral CM-fields with class number two, preprint, 1996.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.