A Schwarz lemma on complex ellipsoids

Hidetaka Hamada

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 269-275
  • ISSN: 0066-2216

Abstract

top
We give a Schwarz lemma on complex ellipsoids.

How to cite

top

Hidetaka Hamada. "A Schwarz lemma on complex ellipsoids." Annales Polonici Mathematici 67.3 (1997): 269-275. <http://eudml.org/doc/270299>.

@article{HidetakaHamada1997,
abstract = {We give a Schwarz lemma on complex ellipsoids.},
author = {Hidetaka Hamada},
journal = {Annales Polonici Mathematici},
keywords = {Schwarz lemma; complex ellipsoid; extreme point; balanced domain; Minkowski function; geodesics; bounded balanced pseudoconvex domains},
language = {eng},
number = {3},
pages = {269-275},
title = {A Schwarz lemma on complex ellipsoids},
url = {http://eudml.org/doc/270299},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Hidetaka Hamada
TI - A Schwarz lemma on complex ellipsoids
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 269
EP - 275
AB - We give a Schwarz lemma on complex ellipsoids.
LA - eng
KW - Schwarz lemma; complex ellipsoid; extreme point; balanced domain; Minkowski function; geodesics; bounded balanced pseudoconvex domains
UR - http://eudml.org/doc/270299
ER -

References

top
  1. [1] G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219-229. Zbl0736.32002
  2. [2] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105-110. 
  3. [3] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993. Zbl0789.32001
  4. [4] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. Zbl0509.32015
  5. [5] L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364. 
  6. [6] H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint. 
  7. [7] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304. Zbl0733.32025
  8. [8] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.