A Schwarz lemma on complex ellipsoids

Hidetaka Hamada

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 3, page 269-275
  • ISSN: 0066-2216

Abstract

top
We give a Schwarz lemma on complex ellipsoids.

How to cite

top

Hidetaka Hamada. "A Schwarz lemma on complex ellipsoids." Annales Polonici Mathematici 67.3 (1997): 269-275. <http://eudml.org/doc/270299>.

@article{HidetakaHamada1997,
abstract = {We give a Schwarz lemma on complex ellipsoids.},
author = {Hidetaka Hamada},
journal = {Annales Polonici Mathematici},
keywords = {Schwarz lemma; complex ellipsoid; extreme point; balanced domain; Minkowski function; geodesics; bounded balanced pseudoconvex domains},
language = {eng},
number = {3},
pages = {269-275},
title = {A Schwarz lemma on complex ellipsoids},
url = {http://eudml.org/doc/270299},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Hidetaka Hamada
TI - A Schwarz lemma on complex ellipsoids
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 3
SP - 269
EP - 275
AB - We give a Schwarz lemma on complex ellipsoids.
LA - eng
KW - Schwarz lemma; complex ellipsoid; extreme point; balanced domain; Minkowski function; geodesics; bounded balanced pseudoconvex domains
UR - http://eudml.org/doc/270299
ER -

References

top
  1. [1] G. Dini and A. S. Primicerio, Proper holomorphic mappings between generalized pseudoellipsoids, Ann. Mat. Pura Appl. (4) 158 (1991), 219-229. Zbl0736.32002
  2. [2] H. Hamada, A Schwarz lemma in several complex variables, in: Proc. Third International Colloquium on Finite or Infinite Dimensional Complex Analysis (Seoul, 1995), Kyushu Univ. Co-op., Fukuoka, Japan, 1995, 105-110. 
  3. [3] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin, 1993. Zbl0789.32001
  4. [4] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. Zbl0509.32015
  5. [5] L. Lempert, Intrinsic distances and holomorphic retracts, in: Complex Analysis and Applications '81, Bulgar. Acad. Sci., Sophia, 1984, 341-364. 
  6. [6] H. L. Royden and P. M. Wong, Carathéodory and Kobayashi metrics on convex domains, preprint. 
  7. [7] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes, Indiana Univ. Math. J. 40 (1991), 293-304. Zbl0733.32025
  8. [8] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques, Astérisque 217 (1993), 241-249. 

NotesEmbed ?

top

You must be logged in to post comments.